为治理雾霾,环保部门加大对企业污染物排放的监管力度,某企业决定对一条价值60万元的老旧流水线进行升级改造,既要减少染污的排放,更要提高该流水线的生产能力,从而提高产品附加值,预测产品附加值(单位:万元)与投入改造资金(单位:万元)之间的关系满足:①与成正比例;②当时,;③改造资金满足不等式,其中为常数,且.(1)求函数的解析式,并求出其定义域;(2)问投入改造资金取何值时,产品附加值达到最大?
附加题(按满分5分计入总分,若总分超过满分值以满分计算) 如果集合满足,则称()为集合的一种分拆.并规定:当且仅当时,()与()为集合的同一种分拆.请计算集合所有不同的分拆种数有多少种?
已知函数满足:①定义在上;②当时,;③对于任意的,有. (1)取一个对数函数,验证它是否满足条件②,③; (2)对于满足条件①,②,③的一般函数,判断是否具有奇偶性和单调性,并加以证明.
已知函数() (1)若,作出函数的图象; (2)设在区间上的最小值为,求的表达式.
如图是一块形状为直角三角形的铁皮,两条直角边,. 现在要将剪成一个矩形,设,. (1)试用表示; (2)问如何截取矩形,才能使剩下 的残料最少?
已知,,,若,求实数的值.