(本小题满分14分)某公司是专门生产健身产品的企业,第一批产品上市销售40天内全部售完,该公司对第一批产品上市后的市场销售进行调研,结果如图(1)、(2)所示.其中(1)的抛物线表示的是市场的日销售量与上市时间的关系;(2)的折线表示的是每件产品的销售利润与上市时间的关系.(1)写出市场的日销售量与第一批产品A上市时间t的关系式;(2)第一批产品A上市后的第几天,这家公司日销售利润最大,最大利润是多少?
.圆锥曲线上任意两点连成的线段称为弦。若圆锥曲线上的一条弦垂直于其对称轴,我们将该弦称之为曲线的垂轴弦。已知点、是圆锥曲线C上不与顶点重合的任意两点,是垂直于轴的一条垂轴弦,直线分别交轴于点和点。(1)试用的代数式分别表示和;(2)若C的方程为(如图),求证:是与和点位置无关的定值;(3)请选定一条除椭圆外的圆锥曲线C,试探究和经过某种四则运算(加、减、乘、除),其结果是否是与和点位置无关的定值,写出你的研究结论并证明。(说明:对于第3题,将根据研究结论所体现的思维层次,给予两种不同层次的评分)
一个房间有3扇同样的窗子,其中只有一扇窗子是打开的。有一只鸟自开着的窗子飞入这个房间,它只能从开着的窗子飞出去。鸟在房子里一次又一次地向着窗户飞去,试图飞出房间. 鸟飞向各扇窗子是随机的.(1)假定鸟是没有记忆的,若这只鸟恰好在第x次试飞时飞出了房间,求试飞次数x的分布列;(2)假定这只鸟是有记忆的,它飞向任一窗子的尝试不多于一次,若这只鸟恰好在第y次试飞时飞出了房间,求试飞次数y的分布列;
正△的边长为4,是边上的高,分别是和边的中点,现将△沿翻折成直二面角. (1)试判断直线与平面的位置关系,并说明理由; (2)求二面角的余弦值;
(3)在线段上是否存在一点,使?证明你的结论.
在△ABC中,已知角A为锐角,且.(1)、将化简成的形式;(2)、若,求边AC的长. ;
设椭圆过点,离心率为(Ⅰ)求椭圆的方程;(Ⅱ)当过点的动直线与椭圆相交与两不同点时,在线段上取点,满足=,证明:点的轨迹与无关.