在数列中,,,且()。(Ⅰ)设(),求数列的通项公式;(Ⅱ)求数列的通项公式。
某市 A , B 两所中学的学生组队参加辩论赛, A 中学推荐3名男生,2名女生, B 中学推荐了3名男生,4名女生,两校推荐的学生一起参加集训,由于集训后队员的水平相当,从参加集训的男生中随机抽取3人,女生中随机抽取3人组成代表队 (1)求 A 中学至少有1名学生入选代表队的概率. (2)某场比赛前,从代表队的6名队员中随机抽取4人参赛,设 X 表示参赛的男生人数,求 X 得分布列和数学期望.
设数列 a n 的前 n 项和 S n = 2 a n - a 1 ,且 a 1 , a 2 + 1 , a 3 成等差数列. (1)求数列 a n 的通项公式; (2)记数列 1 a n 的前 n 项和 T n ,求得 T n - 1 < 1 1000 成立的 n 的最小值.
已知数列 a n 与 b n 满足 a n + 1 - a n = 2 b n + 1 - b n , n ∈ N * . (1)若 b n = 3 n + 5 ,且 a 1 = 1 ,求数列 a n 的通项公式; (2)设 a n 的第 n 0 项是最大项,即 a n 0 ≥ a n n ∈ N * ,求证:数列 b n 的第 n 0 项是最大项; (3)设 a 1 = 3 λ < 0 , b n = λ n n ∈ N * ,求 λ 的取值范围,使得对任意 m , n ∈ N * , a n ≠ 0 ,且 a m a n ∈ 1 6 , 6 .
已知椭圆 x 2 + 2 y 2 = 1 ,过原点的两条直线 l 1 和 l 2 分别于椭圆交于 A 、 B 和 C 、 D ,设 △ A O C 的面积为 S . (1)设 A x 1 , y 1 , C x 1 , y 1 ,用 A 、 C 的坐标表示点 C 到直线 l 1 的距离,并证明 S = 2 x 1 y 2 - x 2 y 1 ; (2)设 l 1 : y = k x , C 3 3 , 3 3 , S = 1 3 ,求 k 的值; (3)设 l 1 与 l 2 的斜率之积为 m ,求 m 的值,使得无论 l 1 与 l 2 如何变动,面积 S 保持不变.
如图, A , B , C 三地有直道相通, A B = 5 千米, A C = 3 千米, B C = 4 千米.现甲、乙两警员同时从 A 地出发匀速前往 B 地,经过 t 小时,他们之间的距离为 f ( t ) (单位:千米).甲的路线是 A B ,速度为5千米/小时,乙的路线是 A C B ,速度为8千米/小时.乙到达 B 地后原地等待.设 t = t 1 时乙到达 C 地.
(1)求 t 1 与 f ( t 1 ) 的值; (2)已知警员的对讲机的有效通话距离是3千米.当 t 1 ≤ t ≤ 1 时,求 f ( t ) 的表达式,并判断 f ( t ) 在 [ t 1 , 1 ] 上得最大值是否超过3?说明理由.