如图, A , B , C 三地有直道相通, A B = 5 千米, A C = 3 千米, B C = 4 千米.现甲、乙两警员同时从 A 地出发匀速前往 B 地,经过 t 小时,他们之间的距离为 f ( t ) (单位:千米).甲的路线是 A B ,速度为5千米/小时,乙的路线是 A C B ,速度为8千米/小时.乙到达 B 地后原地等待.设 t = t 1 时乙到达 C 地.
(1)求 t 1 与 f ( t 1 ) 的值; (2)已知警员的对讲机的有效通话距离是3千米.当 t 1 ≤ t ≤ 1 时,求 f ( t ) 的表达式,并判断 f ( t ) 在 [ t 1 , 1 ] 上得最大值是否超过3?说明理由.
已知函数。 (Ⅰ)当时,求函数的值域; (Ⅱ)若函数的最小值为,求实数的值; (Ⅲ)若,求函数的最大值。
已知函数。 (Ⅰ)利用函数单调性的定义证明函数在上是单调增函数; (Ⅱ)证明方程在区间上有实数解; (Ⅲ)若是方程的一个实数解,且,求整数的值。
某市居民自来水收费标准如下:每户每月用水量不超过4吨时,按每吨1.8元收费;当每户每月用水量超过4吨时,其中4吨按每吨为1.8元收费,超过4吨的部分按每吨3.00元收费。设每户每月用水量为吨,应交水费元。 (Ⅰ)求关于的函数关系; (Ⅱ)某用户1月份用水量为5吨,则1月份应交水费多少元? (Ⅲ)若甲、乙两用户1月用水量之比为,共交水费26.4元,分别求出甲、乙两用户该月的用水量和水费。
已知向量。 (Ⅰ)若,分别求和的值; (Ⅱ)若,求的值。
已知向量。 (Ⅰ)若向量的夹角为,求的值; (Ⅱ)若,求的值; (Ⅲ)若,求的夹角。