(本小题满分15分)已知点,过点作抛物线的切线,切点在第二象限,如图.(Ⅰ)求切点的纵坐标;(Ⅱ)若离心率为的椭圆恰好经过切点,设切线交椭圆的另一点为,记切线的斜率分别为,若,求椭圆方程.
已知直三棱柱ABC-A1B1C1中,AC=BC,点D是AB的中点. (1)求证:BC1∥平面CA1D; (2)求证:平面CA1D⊥平面AA1B1B; (3)若底面ABC为边长为2的正三角形,BB1=,求三棱锥B1-A1DC的体积.
已知函数. (1)求函数的单调递减区间及最小正周期; (2)设锐角△ABC的三内角A,B,C的对边分别是若,,求
等比数列{an}的各项均为正数,且2a1+3a2=1,a32=9a2a6. (1)求数列{an}的通项公式; (2)设,求数列的前n项和.
(1)解关于的不等式; (2)若关于的不等式有解,求实数的取值范围.
已知直线的参数方程为(t为参数),曲线C的参数方程为(为参数). (1)已知在极坐标系(与直角坐标系xOy取相同的长度单位,且以原点O为极点,以x轴正半轴为极轴)中,点P的极坐标为,判断点P与直线的位置关系; (2)设点Q是曲线C上的一个动点,求点Q到直线的距离的最小值与最大值.