本小题满分14分)已知椭圆的左、右焦点分别为F1、F2,若以F2为圆心,b-c为半径作圆F2,过椭圆上一点P作此圆的切线,切点为T,且的最小值不小于。(1)证明:椭圆上的点到F2的最短距离为;(2)求椭圆的离心率e的取值范围;(3)设椭圆的短半轴长为1,圆F2与轴的右交点为Q,过点Q作斜率为的直线与椭圆相交于A、B两点,若OA⊥OB,求直线被圆F2截得的弦长S的最大值。
(本小题满分13分)直线与椭圆交于,两点,已知,,若且椭圆的离心率,又椭圆经过点,为坐标原点. (Ⅰ)求椭圆的方程; (Ⅱ)若直线过椭圆的焦点,(为半焦距),求直线的斜率的值; (Ⅲ)试问:的面积是否为定值?如果是,请给予证明;如果不是,请说明理由.
(本小题满分13分)已知数列的前项和为,数列满足,. (1)求数列的通项公式;(2)求数列的前项和; (3)是否存在非零实数,使得数列为等差数列,证明你的结论.
(本小题满分12分)已知,函数的最小正周期为,且当时,的最小值为0. (1)求和的值; (2)在中,角、、的对边分别是、、,满足,求的取值范围.
(本小题满分13分)直三棱柱的直观图及其正视图、侧视图、俯视图如图所示. (1)求证:面;(2)求点到平面的距离; (3)求二面角的大小.
某玩具厂1996年的生产总值为200万元,如果年生产增长率为5%,计算最早在哪一年生产总值超过300万元.画出程序框图,写出程序.