某港口的水深(米)是时间(0≤≤24,单位:小时)的函数,下面是不同时间的水深数据:根据上述数据描出的曲线如图所示,经拟合,该曲线可近似地看成正弦函数的图像.(1)试根据以上数据,求出的表达式;(2)一般情况下,船舶航行时,船底离海底的距离不少于4.5米时是安全的,如果某船的吃水深度(船底与水面的距离)为7米,那么该船在什么时间段能够安全进港?若该船欲当天安全离港,则在港内停留的时间最多不能超过多长时间?(忽略进出港所用的时间)?
设函数,的定义域均为,且是奇函数,是偶函数,,其中e为自然对数的底数. (Ⅰ)求,的解析式,并证明:当时,,; (Ⅱ)设,,证明:当时,.
如图所示,矩形中,,,,且,交于点. (Ⅰ)求证:; (Ⅱ)求三棱锥的体积.
设等差数列的公差为d,前n项和为,等比数列的公比为q.已知,,,. (Ⅰ)求数列,的通项公式; (Ⅱ)当时,记,求数列的前n项和.
已知向量,,设函数. (Ⅰ)求函数的单调递增区间; (Ⅱ)在中,边分别是角的对边,角为锐角,若,,的面积为,求边的长.
设为实数,函数. (1)若,求的取值范围; (2)讨论的单调性; (3)当时,讨论在区间内的零点个数.