求经过点的直线,且使,到它的距离相等的直线方程。
(本小题满分13分)一个袋中有大小相同的标有1,2,3,4,5,6的6个小球,某人做如下游戏,每次从袋中拿一个球(拿后放回),记下标号.若拿出球的标号是3的倍数,则得1分,否则得分. (Ⅰ)求拿4次至少得2分的概率; (Ⅱ)求拿4次所得分数的分布列和数学期望.
(本小题满分12分)已知抛物线的准线方程,与直线在第一象限相交于点,过作的切线,过作的垂线交x轴正半轴于点,过作的平行线交抛物线于第一象限内的点,过作抛物线的切线,过作的垂线交x轴正半轴于点,…,依此类推,在x轴上形成一点列,,,…,,设点的坐标为(Ⅰ)试探求关于的递推关系式; (Ⅱ)求证:;(Ⅲ)求证:.
(本小题满分12分)某工厂生产某种儿童玩具,每件玩具的成本为30元,并且每件玩具的加工费为元(其中为常数,且),设该工厂每件玩具的出厂价为元(),根据市场调查,日销售量与(为自然对数的底数)成反比例,当每件玩具的出厂价为40元时,日销售量为10件.(Ⅰ)求该工厂的日利润(元)与每件玩具的出厂价元的函数关系式;(Ⅱ)当每件玩具的日售价为多少元时,该工厂的利润最大,并求的最大值.
(本小题满分13分)如图甲,直角梯形中,,,点、分别在,上,且,,,,现将梯形沿折起,使平面与平面垂直(如图乙).(Ⅰ)求证:平面;(Ⅱ)当的长为何值时,二面角的大小为?
(本小题满分13分)已知,,其中,若函数,且的对称中心到对称轴的最近距离不小于(Ⅰ)求的取值范围;(Ⅱ)在中,分别是角的对边,且,当取最大值时,,求的面积.