甲、乙两个篮球运动员相互没有影响地站在罚球线上投球,其中甲的命中率为,乙的命中率为,现在每人都投球三次,且各次投球的结果互不影响.求:(1)甲恰好投进两球的概率;(2)甲乙两人都恰好投进两球的概率;
随机抽取某厂的某种产品200件,其中有一等品126件、二等品50件、三等品20件、次品4件.已知生产1件一、二、三等品获得的利润分别为6万元、2万元、1万元,而生产1件次品亏损2万元,设一件产品获得的利润为X(单位:万元).(1)求X的分布列;(2)求1件产品的平均利润(即X的数学期望);(3)经技术革新后,仍有四个等级的产品,但次品率降为1%,一等品率提高为70%.如果此时要求生产1件产品获得的平均利润不小于4.73万元,则三等品率最多是多少?
已知展开式的各项系数之和比展开式的二项式系数之和小240.(1)求的值;(2)求展开式中系数最大的项;(3)求展开式的奇数项的系数之和.
从5名男同学与4名女同学中选3名男同学与2名女同学,分别担任语文、数学、英语、物理、化学科代表.(1)共有多少种不同的选派方法?(2)若女生甲必须担任语文科代表,共有多少种不同的选派方法?(3)若男生乙不能担任英语科代表,共有多少种不同的选派方法?(注意:用文字简要叙述解题思路,然后列出算式求值.)
已知命题若非是的充分不必要条件,求的取值范围.
已知复数i(),且(1+3i)z为纯虚数.(1)求复数;(2)若 =,求复数的模.