如图,一矩形铁皮的长为8cm,宽为5cm,在四个角上截去四个相同的小正方形,制成一个无盖的小盒子,问小正方形的边长为多少时,盒子容积最大?
(Ⅰ)求直线:与两坐标轴所围成的三角形的内切圆的方程; (Ⅱ)若与(Ⅰ)中的圆相切的直线交轴轴于和两点,且. ①求证:圆与直线相切的条件为; ②求OAB面积的最小值及此时直线的方程.
(本小题满分14分)已知两圆和 (1)m取何值时,两圆外切; (2)m取何值时,两圆内切; (3)求m=45时两圆的公共弦所在直线的方程和公共弦的长.
已知圆C经过A(3,2),B(1,6)圆心在直线y=2x上。 (1)求圆C方程;(2)若直线 x+2y+m=0与圆C相交于M、N两点,且∠MAN=600,求m的值。
已知直线经过直线与直线的交点,且垂直于直线. (1)求直线的方程; (2)求直线与两坐标轴围成的三角形的面积.
(本小题10分)如图,在三棱锥P-ABC中, ,,平面PAB 平面ABC. (1)求证:PA BC: (2)求PC的长度; (3)求二面角P-AC-B的正切值