如图⑴在直角梯形PDCB中,PD∥CB,CD⊥PD,PD=6,BC=3,DC=,A是线段PD的中点,E是线段AB的中点;如图⑵,沿AB把平面PAB折起,使二面角P-CD-B成45角.⑴求证PA⊥平面ABCD;⑵求平面PEC和平面PAD所成的锐二面角的大小.
如图,椭圆的离心率为,轴被曲线截得的线段长等于的短轴长。与轴的交点为,过坐标原点的直线与相交于点,直线分别与相交于点。 (1)求、的方程; (2)求证:。 (3)记的面积分别为,若,求的取值范围。
已知数列是等差数列, (1)判断数列是否是等差数列,并说明理由; (2)如果,试写出数列的通项公式; (3)在(2)的条件下,若数列得前n项和为,问是否存在这样的实数,使当且仅当时取得最大值。若存在,求出的取值范围;若不存在,说明理由。
已知向量记. (1)若,求的值; (2)在△ABC中,角A、B、C的对边分别是、、,且满足,若,试判断△ABC的形状.
已知曲线C上的动点P()满足到定点A(-1,0)的距离与到定点B(1,0)距离之比为 (1)求曲线C的方程。 (2)过点M(1,2)的直线与曲线C交于两点M、N,若|MN|=4,求直线的方程。