已知函数满足 (1)求常数c的值; (2)解不等式.
已知函数 ,且能表示成一个奇函数和一个偶函数的和.(1)求和的解析式.(2)命题:函数在区间上是增函数;命题:函数是减函数,如果命题、有且仅有一个是真命题,求实数的取值范围.(3)在(2)的条件下,比较和的大小.
已知在区间上是增函数,在区间和上是减函数,且(1)求函数的解析式.(2)若在区间上恒有,求实数的取值范围.
如图,扇形是一个观光区的平面示意图,其中,半径=1,为了便于游客观光休闲,拟在观光区内铺设一条从入口到出口的观光道路,道路由弧,线段及线段组成,其中在线段上且,设(1)用表示的长度,并写出的取值范围.(2)当为何值时,观光道路最长?
已知函数为偶函数,其图象上相邻两个最高点之间的距离为.(1)求函数的解析式.(2)若,求的值.
已知函数(1)求函数的最小正周期.(2)当时,求函数的单调减区间.