(本小题共12分)设数列的前项和为,已知,().(Ⅰ)求证:数列为等差数列,并分别写出和关于的表达式;(Ⅱ)若,为数列前项和,求;(Ⅲ)是否存在自然数,使得? 若存在,求的值;若不存在,说明理由.
(本小题满分12分)已知函数.(Ⅰ)当时,求在处的切线方程;(Ⅱ)设函数,①若函数有且仅有一个零点时,求的值;②在①的条件下,若,,求的取值范围。
(本小题满分12分)已知椭圆的中心在原点,焦点在轴上,离心率为,右焦点到右顶点的距离为(Ⅰ)求椭圆的标准方程;(Ⅱ)是否存在与椭圆交于两点的直线:,使得成立?若存在,求出实数的取值范围,若不存在,请说明理由.
(本小题满分12分)设数列的前项和为,且满足,.(Ⅰ)求通项公式;(Ⅱ)设,求证:.
(本小题满分12分)已知三棱柱的侧棱垂直于底面,,,,,分别是,的中点.(Ⅰ)证明:;(Ⅱ)证明:平面;(Ⅲ)求二面角的余弦值.
(本小题满分12分) 在△ABC中,角A,B,C对边分别为满足:,(Ⅰ)求角A 的大小;(Ⅱ)求的最大值,并求取得最大值时角B,C的大小.