三个元件正常工作的概率分别为将它们中某两个元件并联后再和第三元件串联接入电路. (Ⅰ)在如图的电路中,电路不发生故障的概率是多少?
(Ⅱ)三个元件连成怎样的电路,才能使电路中不发生故障的概率最大?请画出此时电路图,并说明理由.
如图,平面PCBM⊥平面ABC,∠PCB=90°,PM∥BC,直线AM与直线PC所成的角为60°,又AC=1,BC=2PM=2,∠ACB="90° " (1)求证:AC⊥BM;(2)求二面角M-AB-C的余弦值(3求P到平面MAB的距离
已知动点P与平面上两定点连线的斜率的积为定值.(1)试求动点P的轨迹方程C.(2)设直线与曲线C交于M、N两点,求|MN|
在边长是2的正方体-中,分别为的中点. 应用空间向量方法求 解下列问题. (1)求EF的长(2)证明:平面;(3)证明: 平面.
已知,设p:函数在上单调递减, q:曲线y=与x轴交于不同的两点.若“p且q”为假,“q”为假,求的取值范围
圆锥曲线上任意两点连成的线段称为弦。若圆锥曲线上的一条弦垂直于其对称轴,我们将该弦称之为曲线的垂轴弦。已知点、是圆锥曲线C上不与顶点重合的任意两点,是垂直于轴的一条垂轴弦,直线分别交轴于点和点。(1)试用的代数式分别表示和;(2)若C的方程为(如图),求证:是与和点位置无关的定值;(3)请选定一条除椭圆外的圆锥曲线C,试探究和经过某种四则运算(加、减、乘、除),其结果是否是与和点位置无关的定值,写出你的研究结论并证明。