((本小题满分14分)如图,是圆的直径,点在圆上,,交于点,平面,,.(1)证明:;(2)求平面与平面所成的锐二面角的余弦值.
已知为坐标原点,,(,是常数),若.(1)求关于的函数关系式; (2)若的最大值为,求的值; (3)利用(2)的结论,用“五点法”作出函数在长度为一个周期的闭区间上的简图,并指出函数的单调区间
若函数f(x)=sin2ax-sinaxcosax(a>0)的图象与直线y=m相切,相邻切点之间的距离为.(1)求m和a的值;(2)若点A(x0,y0)是y=f(x)图象的对称中心,且x0∈,求点A的坐标.
若a,b是两个不共线的非零向量,t∈R.(1)若a,b起点相同,t为何值时,a,tb,(a+b)三向量的终点在一直线上?(2)若|a|=|b|且a与b夹角为60°,t为何值时,|a-tb|的值最小?
已知函数f (x)=(1+)sin2x-2sin(x+)sin(x-).(1)若tanα=2,求f(α);(2)若x∈[,],求f(x)的取值范围
已知A(-1,2),B(2,8).(1)若=,=-,求的坐标;(2)设G(0,5),若⊥,∥,求E点坐标.