已知数列{}中,在直线y=x上,其中n=1,2,3….(Ⅰ)令 (Ⅱ)求数列(Ⅲ)设的前n项和,是否存在实数,使得数列为等差数列?若存在,试求出.若不存在,则说明理由。
已知离心率为的椭圆上的点到左焦点的最长距离为. (Ⅰ)求椭圆的方程; (Ⅱ)如图,过椭圆的左焦点任作一条与两坐标轴都不垂直的弦,若点在轴上,且使得为的一条内角平分线,则称点为该椭圆的“左特征点”,求椭圆的“左特征点”的坐标.
设函数 (Ⅰ)若在点处的切线与轴和直线围成的三角形面积等于,求的值; (Ⅱ)当时,讨论的单调性.
已知数列是等差数列,是等比数列,且,,. (Ⅰ)求数列和的通项公式 (Ⅱ)数列满足,求数列的前项和.
如图,AE⊥平面ABC,AE∥BD,AB=BC=CA=BD=2AE,F为CD中点. (Ⅰ)求证:EF⊥平面BCD; (Ⅱ)求二面角C-DE-A的大小.
某学校有甲、乙、丙三名学生报名参加2012年高校自主招生考试,三位同学通过自主招生考试考上大学的概率分别是,且每位同学能否通过考试时相互独立的。 (Ⅰ)求恰有一位同学通过高校自主招生考试的概率; (Ⅱ)若没有通过自主招生考试,还可以参加2012年6月的全国统一考试,且每位同学通过考试的概率均为,求这三位同学中恰好有一位同学考上大学的概率。