已知函数为实常数,(1)若,求函数的单调递增区间;(2)当时,求函数在上的最小值及相应的值;(3)若存在,使得成立,求的取值范围.
已知函数,(1)当时,求的最大值和最小值(2)若在上是单调增函数,且,求的取值范围.
已知函数的定义域为A,指数函数(>0且≠1)()的值域为B.(1)若,求;(2)若=(,2),求的值.
.数列的各项均为正数,为其前项和,对于任意,总有成等差数列.(Ⅰ)求数列的通项公式;(Ⅱ)设数列的前项和为 ,且,求证:对任意实数(是常数,=2.71828)和任意正整数,总有 2;(Ⅲ) 正数数列中,.求数列中的最大项.
(本小题满分13分)已知点是椭圆上的一点,,是椭圆的两个焦点,且满足.(Ⅰ)求椭圆的方程及离心率;(Ⅱ)设点,是椭圆上的两点,直线,的倾斜角互补,试判断直线的斜率是否为定值?并说明理由.
设的图像经过点如图所示, (Ⅰ)求的解析式;(Ⅱ)若对恒成立,求实数m的取值范围.