判断函数的奇偶性.
( 14分)某乡镇供电所为了调查农村居民用电量情况,随机抽取了500户居民去年的月均用电量(单位:kw/h),将所得数据整理后,画出频率分布直方图如下,其中直方图从左到右前3个小矩形的面积之比为1︰2︰3,试估计(1)该乡镇月均用电量在39.5~43.5内的居民所占百分比约是多少?(2)该乡镇居民月均用电量的中位数约是多少?(精确到0.01)
已知数列的前项和为,数列满足:,前项和为,设。 (1)求数列的通项公式; (2)是否存在自然数k, 当时,总有成立,若存在,求自然数的最小值。若不存在,说明理由。
已知函数 (1) 当时,恒成立,求实数a的取值范围。(2)当时,恒成立,求实数a的取值范围。
如图,一辆汽车从O点出发,沿海岸一条直线公路以100千米/时的速度向东匀速行驶,汽车开动时,在O点南偏东方向距O点500千米且与海岸距离MQ为300千米的海上M处有一快艇,与汽车同时出发,要把一件重要的物品递送给这辆汽车的司机,问快艇至少须以多大的速度行驶,才能把物品递送到司机手中,并求快艇以最小速度行驶时的方向与OM所成的角.
已知f(x)=-3x2+m(6-m)x+n(1) 解关于m的不等式f(1)>0;(2) 当不等式f(x)>0的解集为(-1,3)时,求实数m,n的值。