已知f(x)在(-1,1)上有定义,f()=-1,且满足x,y∈(-1,1)有f(x)+f(y)=f()⑴证明:f(x)在(-1,1)上为奇函数;⑵对数列x1=,xn+1=,求f(xn);⑶求证
如图,在正方体ABCD-A1B1C1D1中,E、F、G分别是CB、CD、CC1的中点, 求证:平面A B1D1∥平面EFG; 求二面角的正切值。
如图:在三棱锥中,已知点、、分别为棱、、的中点. (Ⅰ)求证:∥平面; (Ⅱ)若,,求证:平面⊥平面.
已知直线经过直线与直线的交点,且垂直于直线. (Ⅰ)求直线的方程; (Ⅱ)求直线与两坐标轴围成的三角形的面积
焦点在x轴上的双曲线过点且点与两焦点的连线互相垂直。 (1)求此双曲线的标准方程; (2)过双曲线的右焦点倾斜角为的直线与双曲线交于A、B两点,求的长。
某高速公路某施工工地需调运建材100吨,可租用装载的卡车和农用车分别为10辆和20辆,若每辆卡车装载8吨,运费960元,每辆农用车装载2.5吨,运费360元,问两种车各租用多少辆时,才能一次性装完且总费用最低?