设二次方程anx2-an+1x+1=0(n=1,2,3,…)有两根α、β,且满足6α-2αβ+6β=3.(1)试用an表示an+1;(2)求证:{an-}是等比数列;(3)当a1=时,求数列{an}的通项公式.
某市近郊有一块500m×500m的正方形的荒地,地方政府准备在此块荒地中建一个综合性休闲广场,休闲广场为图所示的一个矩形场地,其总面积为3000平方米,其中阴影部分为通道,通道宽度均为2米,中间的三个矩形区域将铺设塑胶地面作为运动场地(其中两个小场地形状相同),塑胶运动场地占地面积为平方米.(1)分别写出用表示和的函数关系式(写出函数定义域);(2)怎样设计(当和分别取何值时)才能使取得最大值,最大值为多少?
如图,在底面为直角梯形的四棱锥,, (1)求证:(2)求二面角的大小.
已知,命题函数在上单调递减,命题曲线与轴交于不同的两点,若为假命题,为真命题,求实数的取值范围.
在中,角、、的对边分别为、、,且满足.(1)求角的大小;(2)当时,求的面积
已知函数 .(Ⅰ)求函数的单调区间;(Ⅱ)若函数的图像在点处的切线的斜率为,问: 在什么范围取值时,对于任意的,函数在区间上总存在极值?(Ⅲ)当时,设函数,若在区间上至少存在一个,使得成立,试求实数的取值范围.