已知椭圆中心在原点,焦点在x轴上,离心率,过椭圆的右焦点且垂直于长轴的弦长为(1)求椭圆的标准方程;(2)已知直线L与椭圆相交于P、Q两点,O为原点,且OP⊥OQ。试探究点O到直线L的距离是否为定值?若是,求出这个定值;若不是,说明理由。
某工厂生产甲乙两种产品,已知生产每吨甲、乙两种产品所需的煤、电力、劳动力、获得利润及每天资源限额(最大供应量)如下表所示:
问:每天生产甲、乙两种产品各多少吨,获得利润总额最大?
(附加题)已知∈R,k∈R), (1)若,且,求x的值; (2)若,是否存在实数k,使⊥?若存在,求出k的取值范围;若不存在,请说明理由。
(附加题)已知函数,的最大值是1,其图像经过点. (1)求的解析式; (2)已知,且,,求的值.
已知函数. (1)求的最小正周期; (2)求在区间上的最大值和最小值以及取得最大值、最小值时x的值.
已知向量, 的夹角为, 且, , 若, , 求 (1)·; (2).