(本题满分12分)在中,为角所对的三边,已知,,.(Ⅰ)求角;(Ⅱ)若,设=,的周长为,求的最大值.
(本小题满分12分)已知函数 (1)求的单调区间和极值; (2)若对于任意的,都存在,使得,求的取值范围
已知椭圆上的点到两焦点的距离和为,短轴长为,直线与椭圆交于两点. (Ⅰ)求椭圆C方程; (Ⅱ)若直线与圆相切,证明: 为定值; (Ⅲ)在(Ⅱ)的条件下,求的取值范围.
如图,在三棱锥中,,,,. (Ⅰ)求证:; (Ⅱ)求点到平面的距离.
( 本小题满分12分))设不等式确定的平面区域为,确定的平面区域为. (Ⅰ)定义坐标为整数的点为整点 (1)在区域内任取1个整点,求满足的概率 (2)在区域内任取2个整点,求这两个整点中恰有1个整点在区域内的概率 (Ⅱ) 在区域内任取一个点,求此点在区域的概率.
( 本小题满分12分) 在中,内角的对边分别为,且.已知,, .求: (1)的值; (2)的值.