(本小题满分14分)已知关于的函数,其导函数为.记函数在区间上的最大值为.(1)如果函数在处有极值,试确定、的值;(2)若,证明:对任意的,都有;(3)若对任意的、恒成立,试求的最大值.
设. (1)解不等式; (2)若对任意实数,恒成立,求实数a的取值范围.
已知极坐标系的极点为直角坐标系的原点,极轴为x轴的正半轴,两种坐标系中的长度单位相同,已知曲线的极坐标方程为. (1)求的直角坐标方程; (2)直线(为参数)与曲线C交于,两点,与轴交于,求的值.
已知向量,,设函数. (Ⅰ)求函数的解析式,并求在区间上的最小值; (Ⅱ)在中,分别是角的对边,为锐角,若, ,的面积为,求.
已知矩阵A=有一个属于特征值1的特征向量. (Ⅰ) 求矩阵A; (Ⅱ) 若矩阵B=,求直线先在矩阵A,再在矩阵B的对应变换作用下的像的方程.
已知函数,() (1)若函数存在极值点,求实数b的取值范围; (2)求函数的单调区间; (3)当且时,令,(),()为曲线y=上的两动点,O为坐标原点,能否使得是以O为直角顶点的直角三角形,且斜边中点在y轴上?请说明理由。