(本小题满分14分)已知关于的函数,其导函数为.记函数在区间上的最大值为.(1)如果函数在处有极值,试确定、的值;(2)若,证明:对任意的,都有;(3)若对任意的、恒成立,试求的最大值.
已知各项为正数的等差数列满足,,且(). (Ⅰ)求数列的通项公式; (Ⅱ)设,求数列的前n项和.
设函数. (Ⅰ)当时,解不等式; (Ⅱ)当时,不等式的解集为,求实数的取值范围.
直角坐标系中,曲线的参数方程为(为参数),直线的参数方程为(为参数),为直线与曲线的公共点. 以原点为极点,轴的正半轴为极轴建立极坐标系. (Ⅰ)求点的极坐标; (Ⅱ)将曲线上所有点的纵坐标伸长为原来的倍(横坐标不变)后得到曲线,过点作直线,若直线被曲线截得的线段长为,求直线的极坐标方程.
设函数. (Ⅰ)证明:当,; (Ⅱ)设当时,,求的取值范围.
已知是抛物线上的点,是的焦点, 以为直径的圆与轴的另一个交点为. (Ⅰ)求与的方程; (Ⅱ)过点且斜率大于零的直线与抛物线交于两点,为坐标原点,的面积为,证明:直线与圆相切.