(本小题满分13分)设函数,其中为正整数.(Ⅰ)判断函数的单调性,并就的情形证明你的结论;(Ⅱ)证明:;(Ⅲ)对于任意给定的正整数,求函数的最大值和最小值.
某校200位学生期末考试物理成绩的频率分布直方图如图所示,其中成绩分组区间是:、、、、.(1)求图中的值;(2)根据频率分布直方图,估计这200名学生物理成绩的平均值和中位数.
已知圆x2+y2+2ax-2ay+2a2-4a=0(0<a≤4)的圆心为C,直线l:y=x+m.(1)若m=4,求直线l被圆C所截得弦长的最大值;(2)若直线l是圆心下方的切线,当a在的变化时,求m的取值范围.
已知圆及直线.当直线被圆截得的弦长为时,求(1)的值;(2)求过点并与圆相切的切线方程.
某高校在2015年的自主招生考试成绩中随机抽取40名学生的笔试成绩,按成绩共分成五组:第1组,第2组,第3组,第4组,第5组,得到的频率分布直方图如图所示,同时规定成绩在85分以上(含85分)的学生为“优秀”,成绩小于85分的学生为“良好”,且只有成绩为“优秀”的学生才能获得面试资格.(Ⅰ)求出第4组的频率,并补全频率分布直方图;(Ⅱ)根据样本频率分布直方图估计样本的中位数;(Ⅲ)如果用分层抽样的方法从“优秀”和“良好” 的学生中选出5人,再从这5人中选2人,那么至少有一人是“优秀”的概率是多少?
已知圆C1:x2+y2+2x+2y-8=0与圆C2:x2+y2-2x+10y-24=0相交于A、B两点,(1)求公共弦AB所在的直线方程;(2)求圆心在直线y=-x上,且经过A、B两点的圆的方程.