如图,四棱锥P-ABCD的侧面PAD垂直于底面ABCD,∠ADC=∠BCD=,PA=PD=AD=2BC=2,CD,M在棱PC上,N是AD的中点,二面角M-BN-C为. (1)求的值; (2)求直线与平面BMN所成角的大小.
(本小题12分) 正△ABC的边长为4,CD是AB边上的高,E、F分别是AC和BC边的中点,现将△ABC沿CD翻折成直二面角A—DC—B. (Ⅰ)试判断直线AB与平面DEF的位置关系,并说明理由; (Ⅱ)求直线BC与平面DEF所成角的余弦值; (Ⅲ)在线段BC上是否存在一点P,使AP⊥DE?证明你的结论.
(本小题15分) 如图,在长方体ABCD-A1B1C1D1中,AD=AA1=1,AB=2,点E在棱AB上移动. (1)证明:D1E⊥A1D ; (2)当E为AB的中点时,求点E到面ACD1的距离; (3)AE等于何值时,二面角D1-EC-D的大小为.
(本小题10分) 设,在平面直角坐标系中,已知向量,向量,,动点的轨迹为E. (1)求轨迹E的方程,并说明该方程所表示曲线的形状; (2)点为当时轨迹E上的任意一点,定点的坐标为(3,0), 点满足,试求点的轨迹方程。
(本小题10分) 某隧道的横段面是由一段抛物线及矩形的三边组成的,尺寸如图所示。某卡车空车时能通过此隧道。现载一集装箱,箱宽3米,车与箱共高米。此时,卡车能否通过此隧道?说明理由。
已知焦点在x轴上,中心在坐标原点的椭圆C的离心率为,且过点. (I)求椭圆C的方程; (II)直线分别切椭圆C与圆(其中3<R<5)于A、B两点,求|AB|的最大值.