已知极坐标系的极点与直角坐标系的原点重合,极轴与直角坐标系中轴的正半轴重合,且两坐标系有相同的长度单位,圆C的参数方程为(为参数),点Q的极坐标为。(1)化圆C的参数方程为极坐标方程;(2)直线过点Q且与圆C交于M,N两点,求当弦MN的长度为最小时,直线的直角坐标方程。
(设函数,且为的极值点. (Ⅰ) 若为的极大值点,求的单调区间(用表示); (Ⅱ)若恰有1解,求实数的取值范围.
已知四棱锥中,,底面是边长为的菱形,,.(I)求证:;(II)设与交于点,为中点,若二面角的正切值为,求的值.
在数列中,为其前项和,满足.(I)若,求数列的通项公式;(II)若数列为公比不为1的等比数列,求.
已知,满足. (I)将表示为的函数,并求的最小正周期;(II)已知分别为的三个内角对应的边长,若对所有恒成立,且,求的取值范围.
(本题192班必做题,其他班不做)已知二次函数f(x)=ax2+bx+c,若f(x)+f(x+1)=2x2-2x+13(1)求函数f(x)的解析式;(2)画该函数的图象;(3)当x∈[t,5]时,求函数f(x)的最大值.