已知四棱锥中,,底面是边长为的菱形,,.(I)求证:;(II)设与交于点,为中点,若二面角的正切值为,求的值.
(本小题满分12分)如图,角的始边落在轴上,其始边、终边分别与单位圆交于点、(),△为等边三角形. (1)若点的坐标为,求的值; (2)设,求函数的解析式和值域.
(本小题满分10分)已知函数 (1)试求的值域; (2)设,若对恒有成立,试求实数的取值氛围。
(本小题满分12分)设函数的定义域为R,当时,,且对任意,都有,且。 (1)求的值; (2)证明:在R上为单调递增函数; (3)若有不等式成立,求的取值范围。
(本小题满分12分)对于定义域为D的函数,若同时满足下列条件:①在D内单调递增或单调递减;②存在区间[],使在[]上的值域为[];那么把()叫闭函数。(1)求闭函数符合条件②的区间[]; (2)判断函数是否为闭函数?并说明理由; (3)判断函数是否为闭函数?若是闭函数,求实数的取值范围。
(12分)已知定义域为的单调函数且图关于点对称,当时,. (1)求的解析式; (2)若对任意的,不等式恒成立,求实数的取值范围.