某公司有电子产品件,合格率为96%,在投放市场之前,决定对该产品进行最后检验,为了减少检验次数,科技人员采用打包的形式进行,即把件打成一包,对这件产品进行一次性整体检验,如果检测仪器显示绿灯,说明该包产品均为合格品;如果检测仪器显示红灯,说明该包产品至少有一件不合格,须对该包产品一共检测了次(1)探求检测这件产品的检测次数;(2)如果设,要使检测次数最少,则每包应放多少件产品?
(10分)已知直线l:kx-y+1+2k=0. (1)求证:直线l恒过某个定点;(2)若直线l交x轴负半轴于A,交y轴正半轴于B,△AOB的面积为S,求S的最小值并求此时直线l的方程;
预算用2000元购买单件为50元的桌子和20元的椅子,希望使桌椅的总数尽可能的多,但椅子不少于桌子数,且不多于桌子数的1 5倍,问桌、椅各买多少才行?
已知圆心为C的圆经过点A(1,1)和B(2,-2),且圆心C在直线上,求圆心为C的圆的方程。
求经过直线L1:3x + 4y – 5 = 0与直线L2:2x – 3y + 8 = 0的交点M,且满足下列条件的直线方程:(1)与直线2x + y + 5 = 0平行;(2)与直线2x + y + 5 = 0垂直。
设分别是椭圆C:的左右焦点, (1)设椭圆C上的点到两点距离之和等于4,写出椭圆C的方程和焦点坐标。 (2)设K是(1)中所得椭圆上的动点,求线段的中点B的轨迹方程。 (3)设点P是椭圆C 上的任意一点,过原点的直线L与椭圆相交于M,N两点,当直线PM ,PN的斜率都存在,并记为 试探究的值是否与点P及直线L有关,并证明你的结论。