设分别是椭圆C:的左右焦点, (1)设椭圆C上的点到两点距离之和等于4,写出椭圆C的方程和焦点坐标。 (2)设K是(1)中所得椭圆上的动点,求线段的中点B的轨迹方程。 (3)设点P是椭圆C 上的任意一点,过原点的直线L与椭圆相交于M,N两点,当直线PM ,PN的斜率都存在,并记为 试探究的值是否与点P及直线L有关,并证明你的结论。
正三棱柱的侧面展开图是边长分别为2和4的矩形,则它的体积为 。
函数y=x+的值域是 。
已知{an}是首项为2,公比为的等比数列,Sn为它的前n项和 (1)用Sn表示Sn+1; (2)是否存在自然数c和k,使得成立
数列{an}的前n项和为Sn,已知{Sn}是各项均为正数的等比数列,试比较与的大小,并证明你的结论.
设, (1)利用函数单调性的意义,判断f(x)在(0,+∞)上的单调性; (2)记f(x)在0<x≤1上的最小值为g(a),求y=g(a)的解析式.