如图,在四棱锥O—ABCD中,底面ABCD是菱形,OA⊥平面ABCD,E为OA的中点,F为BC的中点,求证:⑴平面BDO⊥平面ACO;⑵直线EF∥平面OCD.
用一个平行于圆锥底面的平面截这个圆锥,截得圆台上、下底面的面积之比为1∶16,截去的圆锥的母线长是3cm,求圆台的母线长.
一矩形铁皮的长为8 cm,宽为5 cm,在四个角上截去四个相同的小正方形,制成一个无盖的小盒子,问小正方形的边长为多少时,盒子容积最大?
设命题p:(4x-3)2≤1;命题q:x2-(2a+1)x+a(a+1)≤0,若是的必要不充分条件,求实数a的取值范围.
已知函数 (1)当时,求的最小值; (2)在区间(1,2)内任取两个实数p,q,且p≠q,若不等式>1恒成立,求实数a的取值范围; (3)求证:(其中)。
已知椭圆:的离心率,原点到过点,的直线的距离是. (1)求椭圆的方程; (2)若椭圆上一动点关于直线的对称点为,求的取值范围; (3)如果直线交椭圆于不同的两点,,且,都在以为圆心的圆上,求的值.