已知:双曲线的顶点坐标(0,1),(0,-l),离心率,又抛物线的焦点与双曲线一个焦点重合.(1)求抛物线的方程;(2)已知是轴上的两点,过做直线与抛物线交于两点,试证:直线与轴所成的锐角相等.(3)在(2)的前提下,若直线的斜率为1,问的面积是否有最大值?若有,求出最大值.若没有,说明理由.
已知椭圆C的中心在坐标原点,焦点在x轴上,离心率为,它的一个顶点恰好是抛物线的焦点。 (1)求椭圆C的标准方程; (2)过椭圆C的右焦点作直线l交椭圆C于A、B两点,交y轴于M点,若的值。
已知函数 (1)当时,求函数的单调区间; (2)若函数的图像在点处的切线的倾斜角为,问:在什么范围取值时,函数在区间上总存在极值?
一个多面体的直观图和三视图如下: (其中分别是中点) (1)求证:平面; (2)求多面体的体积.
f(x)=x2+x,数列{an}的前n项和为Sn,点(n,Sn)(n∈N*)均在函数y=f(x)的图象上. (Ⅰ)求数列{an}的通项公式an; (Ⅱ)令bn=,求数列{bn}的前n项和Tn
在四棱锥P-ABCD中,平面PAD⊥平面ABCD,PA=PD,底面ABCD是菱形,∠A=60°,E是AD的中点,F是PC的中点. (Ⅰ)求证:BE⊥平面PAD; (Ⅱ)求证:EF∥平面PAB;