(本小题满分12分)已知p:函数在上单调递增;q:关于的不等式的解集为R.若为真命题,为假命题,求的取值范围.
若,,,求。
已知圆过定点,圆心在抛物线上,、为圆与轴的交点.(Ⅰ)当圆心是抛物线的顶点时,求抛物线准线被该圆截得的弦长.(Ⅱ)当圆心在抛物线上运动时,是否为一定值?请证明你的结论.(Ⅲ)当圆心在抛物线上运动时,记,,求的最大值,并求出此时圆的方程.
已知等比数列中,,公比,又恰为一个等差数列的第7项,第3项和第1项.(1)求数列的通项公式;(2)设,求数列
如图,在三棱锥中,直线平面,且,又点,,分别是线段,,的中点,且点是线段上的动点.(1)证明:直线平面;(2)若,求二面角的平面角的余弦值.
已知函数,x∈R.(1)求函数f(x)的最小正周期及对称轴方程;(2)当时,求函数f(x)的最大值和最小值及相应的x值.