已知在数列{an}中,a1=t,a2=t2,其中t>0,x=是函数f(x)=an-1x3-3[(t+1)an-an+1]x+1 (n≥2)的一个极值点(Ⅰ)求数列{an}的通项公式(Ⅱ)当时,令,数列前项的和为,求证:(Ⅲ)设,数列前项的和为,求同时满足下列两个条件的的值:(1) (2)对于任意的,均存在,当时,
(本小题满分12分)甲、乙两人进行五局三胜制羽毛球决赛,除第五局两人获胜的机会相等外,其余各局甲获胜的概率都是,记为比赛的局数,每局比赛结果相互独立.(1)试求甲获胜的概率,乙获胜的概率;(2)求的分布列及数学期望值.
(本小题满分12分)已知函数.(1)求的值;(2)若中,,,求.
(本小题满分14分)定义在的奇函数有极小值为.(1)求的解析式; (2)若曲线有三条不同的切线,,相交于点,求实数的取值范围.
(本小题满分14分)已知直线经过椭圆:的右焦点和上顶点.(1)求椭圆的标准方程;(2)设直线与椭圆交于、,点关于轴的对称点(与不重合),则直线与轴是否交于一定点?若是,请写出定点坐标,并证明你的结论;若不是,请说明理由.
(本小题满分14分)已知正项数列对任意的,都有.(1)求,的值;(2)求数列的通项公式;(3)设数列的前项和为,当,证明:.