已知直线所经过的定点恰好是椭圆的一个焦点,且椭圆上的点到点的最大距离为8.(1)求椭圆的标准方程;(2)已知圆,直线.试证明当点在椭圆上运动时,直线与圆恒相交;并求直线被圆所截得的弦长的取值范围.
(本小题满分12分)某旅行社为调查市民喜欢“人文景观”景点是否与年龄有关,随机抽取了55名市民,得到数据如下表:
(1)判断是否有99.5%的把握认为喜欢“人文景观”景点与年龄有关?(2)用分层抽样的方法从喜欢“人文景观”景点的市民中随机抽取6人作进一步调查,将这6位市民作为一个样本,从中任选2人,求恰有1位“大于40岁”的市民和1位“20岁至40岁”的市民的概率.下面的临界值表供参考:
(参考公式:,其中)
(本小题满分12分)如图,在中,已知,是边上的一点, (1)求的值;(2)求的值.
(本小题满分10分)已知等比数列前项和为,且满足,(1)求数列的通项公式;(2)求的值
(本小题满分12分) 设函数(1)求函数的单调区间;(2)若不等式 ()在上恒成立,求的最大值.
(本小题满分12分)设点、分别是椭圆的左、右焦点,为椭圆上任意一点,且的最小值为.(1)求椭圆的方程;(2)设直线(直线、不重合),若、均与椭圆相切,试探究在轴上是否存在定点,使点到、的距离之积恒为1?若存在,请求出点坐标;若不存在,请说明理由.