已知直线所经过的定点恰好是椭圆的一个焦点,且椭圆上的点到点的最大距离为8.(1)求椭圆的标准方程;(2)已知圆,直线.试证明当点在椭圆上运动时,直线与圆恒相交;并求直线被圆所截得的弦长的取值范围.
已知关于的方程有实数根.(1)求实数,的值;(2)若复数满足,求为何值时,有最小值并求出最小值.
已知是复数,与均为实数,且复数在复平面上对应的点在第一象限,求实数的取值范围.
设为坐标原点,已知向量,分别对应复数,且,,.若可以与任意实数比较大小,求×的值.
实数为何值时,复数.(1)为实数;(2)为虚数;(3)为纯虚数;(4)对应点在第二象限.
已知复数对应的点落在射线上,,求复数.