(本题满分14分)设直线. 若直线l与曲线S同时满足下列两个条件:①直线l与曲线S相切且至少有两个切点;②对任意x∈R都有. 则称直线l为曲线S的“上夹线”.(Ⅰ)已知函数.求证:为曲线的“上夹线”.(Ⅱ)观察下图: 根据上图,试推测曲线的“上夹线”的方程,并给出证明.
(本小题满分12分)某运动员进行20次射击练习,记录了他射击的有关数据,得到下表:
(1)求此运动员射击的环数的平均值;(2)若将表中某一环数所对应的命中次数作为一个结果,在四个结果(2次、7次、8次、3次)中,随机取2个不同的结果作为基本事件进行研究,记这两个结果分别为次、次,每个基本事件为,求事件的概率。
(本小题满分12分)已知函数 ,(1)求函数的定义域;(2)证明:是偶函数;(3)若,求的取值范围。
(本小题满分12分)已知集合(1)求和; (2)写出集合的所有子集。
(本小题满分12分)已知函数的图象在处的切线与轴平行.(1)求与的关系式及f(x)的极大值; (2)若函数在区间上有最大值为,试求的值.
(本小题满分12分) 已知数列中,点 在函数的图象上,.数列的前n项和为,且满足当时, (1)证明数列是等比数列;(2)求;(3)设,,求的值.