(本小题满分14分)函数的图象在y轴右侧的第一个最高点(即函数取得最大值的点)为,在原点右侧与x轴的第一个交点为Q(). 求:(1)函数的表达式; (2)函数在区间上的对称轴的方程.
如图02,在长方体ABCD-A1B1C1D1中,P、Q、R分别是棱AA1、BB1、BC上的点,PQ∥AB,C1Q⊥PR,求证:∠D1QR=90°.
点P在平面ABC的射影为O,且PA、PB、PC两两垂直,那么O是△ABC的( )
在立体图形P-ABCD中,底面ABCD是正方形,PA⊥底面ABCD,PA=AB,Q是PC中点.AC,BD交于O点.(Ⅰ)求二面角Q-BD-C的大小:(Ⅱ)求二面角B-QD-C的大小.
已知ABCD是边长为4的正方形,E、F分别是AB、AD的中点,GC垂直于ABCD所在的平面,且GC=2.求点B到平面EFG的距离.
将矩形ABCD沿对角线BD折起来,使点C的新位置在面ABC上的射影E恰在AB上.求证: