有时可用函数 f ( x ) = { 0 . 1 + 15 ln a a - x , ( x ≤ 6 ) x - 4 . 4 x - 4 , ( x > 6 ) 描述学习某学科知识的掌握程度,其中 x 表示某学科知识的学习次数( x ∈ N + ), f ( x ) 表示对该学科知识的掌握程度,正实数 a 与学科知识有关. (1)证明:当 x ≥ 7 时,掌握程度的增加量 f ( x + 1 ) - f ( x ) 总是下降; (2)根据经验,学科甲、乙、丙对应的a的取值区间分别为 ( 115 , 121 ] , ( 121 , 127 ] , ( 121 , 133 ] .当学习某学科知识6次时,掌握程度是85%,请确定相应的学科.
已知曲线的方程为,过原点作斜率为的直线和曲线相交,另一个交点记为,过作斜率为的直线与曲线相交,另一个交点记为,过作斜率为的直线与曲线相交,另一个交点记为,如此下去,一般地,过点作斜率为的直线与曲线相交,另一个交点记为,设点().(1)指出,并求与的关系式();(2)求()的通项公式,并指出点列,,,向哪一点无限接近?说明理由;(3)令,数列的前项和为,试比较与的大小,并证明你的结论.
设椭圆的中心和抛物线的顶点均为原点,、的焦点均在轴上,过的焦点F作直线,与交于A、B两点,在、上各取两个点,将其坐标记录于下表中:(1)求,的标准方程;(2)若与交于C、D两点,为的左焦点,求的最小值;(3)点是上的两点,且,求证:为定值;反之,当为此定值时,是否成立?请说明理由.
为了寻找马航残骸,我国“雪龙号”科考船于2014年3月26日从港口出发,沿北偏东角的射线方向航行,而在港口北偏东角的方向上有一个给科考船补给物资的小岛,海里,且.现指挥部需要紧急征调位于港口正东海里的处的补给船,速往小岛装上补给物资供给科考船.该船沿方向全速追赶科考船,并在处相遇.经测算当两船运行的航线与海岸线围成的三角形的面积最小时,这种补给方案最优.(1)求关于的函数关系式;(2)应征调位于港口正东多少海里处的补给船只,补给方案最优?
如图,点A、B是单位圆上的两点,点C是圆与轴的正半轴的交点,将锐角的终边按逆时针方向旋转到.(1)若点A的坐标为,求的值;(2)用表示,并求的取值范围.
如图,在体积为的正三棱锥中,长为,为棱的中点,求(1)异面直线与所成角的大小(结果用反三角函数值表示);(2)正三棱锥的表面积.