有时可用函数 f ( x ) = { 0 . 1 + 15 ln a a - x , ( x ≤ 6 ) x - 4 . 4 x - 4 , ( x > 6 ) 描述学习某学科知识的掌握程度,其中 x 表示某学科知识的学习次数( x ∈ N + ), f ( x ) 表示对该学科知识的掌握程度,正实数 a 与学科知识有关. (1)证明:当 x ≥ 7 时,掌握程度的增加量 f ( x + 1 ) - f ( x ) 总是下降; (2)根据经验,学科甲、乙、丙对应的a的取值区间分别为 ( 115 , 121 ] , ( 121 , 127 ] , ( 121 , 133 ] .当学习某学科知识6次时,掌握程度是85%,请确定相应的学科.
(本小题满分10分) 在△ABC中,、、分别是角、、所对的边.已知. (Ⅰ)求的大小; (Ⅱ)若,△ABC的面积为,求的值.
已知函数的图象经过点和,记 (1)求数列的通项公式; (2)设,若,求的最小值; (3)求使不等式对一切均成立的最大实数.
已知函数 (1)求曲线在点处的切线方程; (2)若过点可作曲线的三条切线,求实数的取值范围.
已知动圆过定点,且与定直线相切. (1)求动圆圆心的轨迹的方程; (2)若是轨迹的动弦,且过, 分别以、为切点作轨迹的切线,设两切线交点为,证明:.
如图,己知中,,,且 (1)求证:不论为何值,总有 (2)若求三棱锥的体积.