[山西]2012届山西省四校高三第三次联考考试理科数学试卷
已知矩形ABCD的顶点都在半径为4的球O的球面上,且AB=3,BC=2,则棱锥O-ABCD的体积为
A. | B.3 | C.2 | D. |
执行如图所示的程序框图,输入N的值为2012,则输出S的值是
A.2011 | B.2012 | C.2010 | D.2009 |
设x,y满足约束条件,若目标函数 (其中)的最大值为3,则的最小值为
A.3 | B.1 | C.2 | D.4 |
已知双曲线与抛物线有一个公共的焦点F,且两曲线的一个交点为P,若|PF|=5,则双曲线的渐近线方程为
A. | B. | C. | D. |
已知函数 是定义在上的增函数,函数的图象关于点(1, 0)对称. 若对任意的,不等式恒成立,则当>3时,的取值范围是
A.(3, 7) | B.(9, 25) | C.(13, 49) | D.(9, 49) |
有七名同学站成一排照相,其中甲必须站在正中间,并且乙、丙两位同学要站在一起,则不同的站法有_______
在中,,,分别是角A,B,C的对边,且.
(1)求角的值;
(2)已知函数,将的图像向左平移个单位长度后得到函数的图像,求的单调增区间.
如图,四棱锥的底面是正方形,⊥平面,,点E是SD上的点,且.
(1)求证:对任意的,都有AC⊥BE;
(2)若二面角C-AE-D的大小为,求的值.
中华人民共和国《道路交通安全法》中将饮酒后违法驾驶机动车的行为分成两个档次:“酒后驾车”和“醉酒驾车”,其检测标准是驾驶人员血液中的酒精含量Q(简称血酒含量,单位是毫克/100毫升),当20≤Q≤80时,为酒后驾车;当Q>80时,为醉酒驾车.某市公安局交通管理部门于2011年2月的某天晚上8点至11点在市区设点进行一次拦查行动,共依法查出了60名饮酒后违法驾驶机动车者,如图为这60名驾驶员抽血检测后所得结果画出的频率分布直方图(其中Q≥140的人数计入120≤Q<140人数之内).
(1)求此次拦查中醉酒驾车的人数;
(2)从违法驾车的60人中按酒后驾车和醉酒驾车利用分层抽样抽取8人做样本进行研究,再从抽取的8人中任取3人,求3人中含有醉酒驾车人数的分布列和期望.
已知椭圆的离心率为,以原点为圆心,椭圆的短半轴长为半径的圆与直线相切.
(1)求椭圆的方程;
(2) 若过点(2,0)的直线与椭圆相交于两点,设为椭圆上一点,且满足(为坐标原点),当< 时,求实数取值范围
已知函数.
(1)当时,求的极值;
(2)求的单调区间;
(3)若对任意的,恒有 成立,求实数的取值范围.
选修4-1:几何证明与选讲
如图,已知PA与圆O相切于点A,经过点O的割线PBC交圆O于点B.C,的平分线分别交AB.AC于点D.E.
(1)证明:.
(2)若AC=AP,求的值.
选修4-4:坐标系与参数方程
已知点,参数,点Q在曲线C:上
(1)求点P的轨迹方程和曲线C的直角坐标方程;
(2)求点P与点Q之间距离的最小值。