2020年湖北省黄石市中考数学试卷
在平面直角坐标系中,点 的坐标是 ,连接 ,将线段 绕原点 旋转 ,得到对应线段 ,则点 的坐标为
A. |
|
B. |
|
C. |
|
D. |
|
据报道,2020年4月9日下午,黄石市重点园区(珠三角)云招商财富推介会上,我市现场共签项目20个,总投资137.6亿元.用科学记数法表示137.6亿元,可写为 元.
某中学规定学生体育成绩满分为100分,按课外活动成绩、期中成绩、期末成绩的比,计算学期成绩.小明同学本学期三项成绩依次为90分、90分、80分,则小明同学本学期的体育成绩是 分.
匈牙利著名数学家爱尔特希.,曾提出:在平面内有个点,其中每三个点都能构成等腰三角形,人们将具有这样性质的个点构成的点集称为爱尔特希点集.如图,是由五个点、、、、构成的爱尔特希点集(它们为正五边形的任意四个顶点及正五边形的中心构成),则的度数是 .
如图,是某小区的甲、乙两栋住宅楼,小丽站在甲栋楼房 的楼顶,测量对面的乙栋楼房 的高度.已知甲栋楼房 与乙栋楼房 的水平距离 米,小丽在甲栋楼房顶部 点,测得乙栋楼房顶部 点的仰角是 ,底部 点的俯角是 ,求乙栋楼房 的高度(结果保留根号).
如图,反比例函数 的图象与正比例函数 的图象相交于 、 两点,点 在第四象限, 轴.
(1)求 的值;
(2)以 、 为边作菱形 ,求 点坐标.
已知:关于 的一元二次方程 有两个实数根.
(1)求 的取值范围;
(2)设方程的两根为 、 ,且满足 ,求 的值.
我市将面向全市中小学开展"经典诵读"比赛.某中学要从2名男生2名女生共4名学生中选派2名学生参赛.
(1)请列举所有可能出现的选派结果;
(2)求选派的2名学生中,恰好为1名男生1名女生的概率.
我国传统数学名著《九章算术》记载:"今有牛五、羊二,直金十九两;牛二、羊五,直金十六两.问牛、羊各直金几何?"译文:"假设有5头牛、2只羊,值19两银子;2头牛、5只羊,值16两银子.问每头牛、每只羊分别值银子多少两?"根据以上译文,提出以下两个问题:
(1)求每头牛、每只羊各值多少两银子?
(2)若某商人准备用19两银子买牛和羊(要求既有牛也有羊,且银两须全部用完),请问商人有几种购买方法?列出所有的可能.
如图,在 中, , 平分 交 于点 , 为 上一点,经过点 、 的 分别交 、 于点 、 .
(1)求证: 是 的切线;
(2)若 , ,求 的半径;
(3)求证: .