如图,是某小区的甲、乙两栋住宅楼,小丽站在甲栋楼房 AB 的楼顶,测量对面的乙栋楼房 CD 的高度.已知甲栋楼房 AB 与乙栋楼房 CD 的水平距离 AC = 18 3 米,小丽在甲栋楼房顶部 B 点,测得乙栋楼房顶部 D 点的仰角是 30 ° ,底部 C 点的俯角是 45 ° ,求乙栋楼房 CD 的高度(结果保留根号).
先化简,再求值.,其中,
计算:
解方程:
如图,正三角形的边长为.(1)如图①,正方形的顶点在边上,顶点在边上.在正三角形及其内部,以为位似中心,作正方形的位似正方形,且使正方形的面积最大(不要求写作法);(2)求(1)中作出的正方形的边长;(3)如图②,在正三角形中放入正方形和正方形,使得在边上,点分别在边上,求这两个正方形面积和的最大值及最小值,并说明理由.(无原图)
如果一条抛物线与轴有两个交点,那么以该抛物线的顶点和这两个交点为顶点的三角形称为这条抛物线的“抛物线三角形”.(1)“抛物线三角形”一定是 三角形;(2)若抛物线的“抛物线三角形”是等腰直角三角形,求的值;(3)如图,△是抛物线的“抛物线三角形”,是否存在以原点为对称中心的矩形?若存在,求出过三点的抛物线的表达式;若不存在,说明理由.