初中数学

探究函数性质时,我们经历了列表、描点、连线画函数图象,观察分析图象特征,概括函数性质的过程.以下是我们研究函数 y = x + | - 2 x + 6 | + m 性质及其应用的部分过程,请按要求完成下列各小题.

x

- 2

- 1

0

1

2

3

4

5

y

6

5

4

a

2

1

b

7

(1)写出函数关系式中 m 及表格中 a b 的值:

m =    a =    b =   

(2)根据表格中的数据在所给的平面直角坐标系中画出该函数的图象,并根据图象写出该函数的一条性质:   

(3)已知函数 y = 16 x 的图象如图所示,结合你所画的函数图象,直接写出不等式 x + | - 2 x + 6 | + m > 16 x 的解集.

来源:2021年重庆市中考数学试卷(B卷)
  • 更新:2022-09-04
  • 题型:未知
  • 难度:未知

如图,在平面直角坐标系中,矩形 ABCD 的顶点 A B x 轴的正半轴上,反比例函数 y = k x ( k > 0 , x > 0 ) 的图象经过顶点 D ,分别与对角线 AC ,边 BC 交于点 E F ,连接 EF AF .若点 E AC 的中点, ΔAEF 的面积为1,则 k 的值为 (    )

A.

12 5

B.

3 2

C.

2

D.

3

来源:2021年重庆市中考数学试卷(B卷)
  • 更新:2022-09-04
  • 题型:未知
  • 难度:未知

如图,在平面直角坐标系中,菱形 ABCD 的顶点 D 在第二象限,其余顶点都在第一象限, AB / / x 轴, AO AD AO = AD .过点 A AE CD ,垂足为 E DE = 4 CE .反比例函数 y = k x ( x > 0 ) 的图象经过点 E ,与边 AB 交于点 F ,连接 OE OF EF .若 S ΔEOF = 11 8 ,则 k 的值为 (    )

A.

7 3

B.

21 4

C.

7

D.

21 2

来源:2021年重庆市中考数学试卷(A卷)
  • 更新:2022-09-04
  • 题型:未知
  • 难度:未知

如图,点 A B 在反比例函数 y = k x ( k > 0 , x > 0 ) 的图象上, AC x 轴于点 C BD x 轴于点 D BE y 轴于点 E ,连结 AE .若 OE = 1 OC = 2 3 OD AC = AE ,则 k 的值为 (    )

A.

2

B.

3 2 2

C.

9 4

D.

2 2

来源:2021年浙江省温州市中考数学试卷
  • 更新:2022-09-04
  • 题型:未知
  • 难度:未知

电子体重秤读数直观又便于携带,为人们带来了方便.某综合实践活动小组设计了简易电子体重秤:制作一个装有踏板(踏板质量忽略不计)的可变电阻 R 1 R 1 与踏板上人的质量 m 之间的函数关系式为 R 1 = km + b (其中 k b 为常数, 0 m 120 ) ,其图象如图1所示;图2的电路中,电源电压恒为8伏,定值电阻 R 0 的阻值为30欧,接通开关,人站上踏板,电压表显示的读数为 U 0 ,该读数可以换算为人的质量 m

温馨提示:①导体两端的电压 U ,导体的电阻 R ,通过导体的电流 I ,满足关系式 I = U R

②串联电路中电流处处相等,各电阻两端的电压之和等于总电压

(1)求 k b 的值;

(2)求 R 1 关于 U 0 的函数解析式;

(3)用含 U 0 的代数式表示 m

(4)若电压表量程为 0 ~ 6 伏,为保护电压表,请确定该电子体重秤可称的最大质量.

来源:2021年浙江省台州市中考数学试卷
  • 更新:2022-09-04
  • 题型:未知
  • 难度:未知

如图,在平面直角坐标系中,正方形 ABCD 的顶点 A x 轴正半轴上,顶点 B C 在第一象限,顶点 D 的坐标 ( 5 2 2 ) .反比例函数 y = k x (常数 k > 0 x > 0 ) 的图象恰好经过正方形 ABCD 的两个顶点,则 k 的值是   

来源:2021年浙江省绍兴市中考数学试卷
  • 更新:2022-09-04
  • 题型:未知
  • 难度:未知

将一副三角板如图放置在平面直角坐标系中,顶点 A 与原点 O 重合, AB x 轴正半轴上,且 AB = 4 3 ,点 E AD 上, DE = 1 4 AD ,将这副三角板整体向右平移   个单位, C E 两点同时落在反比例函数 y = k x 的图象上.

来源:2021年浙江省衢州市中考数学试卷
  • 更新:2022-09-04
  • 题型:未知
  • 难度:未知

在平面直角坐标系中,对于不在坐标轴上的任意一点 A ( x , y ) ,我们把点 B ( 1 x 1 y ) 称为点 A 的"倒数点".如图,矩形 OCDE 的顶点 C ( 3 , 0 ) ,顶点 E y 轴上,函数 y = 2 x ( x > 0 ) 的图象与 DE 交于点 A .若点 B 是点 A 的"倒数点",且点 B 在矩形 OCDE 的一边上,则 ΔOBC 的面积为   

来源:2021年浙江省宁波市中考数学试卷
  • 更新:2022-09-04
  • 题型:未知
  • 难度:未知

如图,正比例函数 y 1 = k 1 x ( k 1 < 0 ) 的图象与反比例函数 y 2 = k 2 x ( k 2 < 0 ) 的图象相交于 A B 两点,点 B 的横坐标为2,当 y 1 > y 2 时, x 的取值范围是 (    )

A.

x < - 2 x > 2

B.

- 2 < x < 0 x > 2

C.

x < - 2 0 < x < 2

D.

- 2 < x < 0 0 < x < 2

来源:2021年浙江省宁波市中考数学试卷
  • 更新:2022-09-04
  • 题型:未知
  • 难度:未知

背景:点 A 在反比例函数 y = k x ( k > 0 ) 的图象上, AB x 轴于点 B AC y 轴于点 C ,分别在射线 AC BO 上取点 D E ,使得四边形 ABED 为正方形.如图1,点 A 在第一象限内,当 AC = 4 时,小李测得 CD = 3

探究:通过改变点 A 的位置,小李发现点 D A 的横坐标之间存在函数关系.请帮助小李解决下列问题.

(1)求 k 的值.

(2)设点 A D 的横坐标分别为 x z ,将 z 关于 x 的函数称为" Z 函数".如图2,小李画出了 x > 0 时" Z 函数"的图象.

①求这个" Z 函数"的表达式.

②补画 x < 0 时" Z 函数"的图象,并写出这个函数的性质(两条即可).

③过点 ( 3 , 2 ) 作一直线,与这个" Z 函数"图象仅有一个交点,求该交点的横坐标.

来源:2021年浙江省金华市中考数学试卷
  • 更新:2022-09-04
  • 题型:未知
  • 难度:未知

已知点 A ( x 1 y 1 ) B ( x 2 y 2 ) 在反比例函数 y = - 12 x 的图象上.若 x 1 < 0 < x 2 ,则 (    )

A.

y 1 < 0 < y 2

B.

y 2 < 0 < y 1

C.

y 1 < y 2 < 0

D.

y 2 < y 1 < 0

来源:2021年浙江省金华市中考数学试卷
  • 更新:2022-09-04
  • 题型:未知
  • 难度:未知

已知三个点 ( x 1 y 1 ) ( x 2 y 2 ) ( x 3 y 3 ) 在反比例函数 y = 2 x 的图象上,其中 x 1 < x 2 < 0 < x 3 ,下列结论中正确的是 (    )

A.

y 2 < y 1 < 0 < y 3

B.

y 1 < y 2 < 0 < y 3

C.

y 3 < 0 < y 2 < y 1

D.

y 3 < 0 < y 1 < y 2

来源:2021年浙江省嘉兴市中考数学试卷
  • 更新:2022-09-04
  • 题型:未知
  • 难度:未知

已知在平面直角坐标系 xOy 中,点 A 是反比例函数 y = 1 x ( x > 0 ) 图象上的一个动点,连结 AO AO 的延长线交反比例函数 y = k x ( k > 0 , x < 0 ) 的图象于点 B ,过点 A AE y 轴于点 E

(1)如图1,过点 B BF x 轴,于点 F ,连接 EF

①若 k = 1 ,求证:四边形 AEFO 是平行四边形;

②连结 BE ,若 k = 4 ,求 ΔBOE 的面积.

(2)如图2,过点 E EP / / AB ,交反比例函数 y = k x ( k > 0 , x < 0 ) 的图象于点 P ,连结 OP .试探究:对于确定的实数 k ,动点 A 在运动过程中, ΔPOE 的面积是否会发生变化?请说明理由.

来源:2021年浙江省湖州市中考数学试卷
  • 更新:2022-09-04
  • 题型:未知
  • 难度:未知

在直角坐标系中,设函数 y 1 = k 1 x ( k 1 是常数, k 1 > 0 x > 0 ) 与函数 y 2 = k 2 x ( k 2 是常数, k 2 0 ) 的图象交于点 A ,点 A 关于 y 轴的对称点为点 B

(1)若点 B 的坐标为 ( - 1 , 2 )

①求 k 1 k 2 的值;

②当 y 1 < y 2 时,写出 x 的取值范围;

(2)若点 B 在函数 y 3 = k 3 x ( k 3 是常数, k 3 0 ) 的图象上,求 k 1 + k 3 的值.

来源:2021年浙江省杭州市中考数学试卷
  • 更新:2022-09-04
  • 题型:未知
  • 难度:未知

若反比例函数的图象经过点 ( 1 , - 2 ) ,则该反比例函数的解析式(解析式也称表达式)为  

来源:2021年云南省中考数学试卷
  • 更新:2022-09-04
  • 题型:未知
  • 难度:未知

初中数学反比例函数试题