在直角坐标系中,设函数 y 1 = k 1 x ( k 1 是常数, k 1 > 0 , x > 0 ) 与函数 y 2 = k 2 x ( k 2 是常数, k 2 ≠ 0 ) 的图象交于点 A ,点 A 关于 y 轴的对称点为点 B .
(1)若点 B 的坐标为 ( - 1 , 2 ) ,
①求 k 1 , k 2 的值;
②当 y 1 < y 2 时,写出 x 的取值范围;
(2)若点 B 在函数 y 3 = k 3 x ( k 3 是常数, k 3 ≠ 0 ) 的图象上,求 k 1 + k 3 的值.
如图,已知点A(1,a)是反比例函数 y = - 3 x 的图象上一点,直线 y = - 1 2 x + 1 2 与反比例函数 y = - 3 x 的图象在第四象限的交点为点B.
(1)求直线AB的解析式;
(2)动点P(x,0)在x轴的正半轴上运动,当线段PA与线段PB之差达到最大时,求点P的坐标.
望江中学为了了解学生平均每天“诵读经典”的时间,在全校范围内随机抽查了部分学生进行调查统计,并将调查统计的结果分为:每天诵读时间t≤20分钟的学生记为A类,20分钟<t≤40分钟的学生记为B类,40分钟<t≤60分钟的学生记为C类,t>60分钟的学生记为D类四种.将收集的数据绘制成如下两幅不完整的统计图.请根据图中提供的信息,解答下列问题:
(1)m= %,n= %,这次共抽查了 名学生进行调查统计;
(2)请补全上面的条形图;
(3)如果该校共有1200名学生,请你估计该校C类学生约有多少人?
如图,AB是半圆O的直径,点P是BA延长线上一点,PC是⊙O的切线,切点为C,过点B作BD⊥PC交PC的延长线于点D,连接BC.求证:
(1)∠PBC=∠CBD;
(2)BC2=AB•BD.
小明、小林是三河中学九年级的同班同学,在四月份举行的自主招生考试中,他俩都被同一所高中提前录取,并将被编入A、B、C三个班,他俩希望能再次成为同班同学.
(1)请你用画树状图法或列举法,列出所有可能的结果;
(2)求两人再次成为同班同学的概率.
如图,在▱ABCD中,E、F分别为边AD、BC的中点,对角线AC分别交BE,DF于点G、H.求证:AG=CH.