在直角坐标系中,设函数 y 1 = k 1 x ( k 1 是常数, k 1 > 0 , x > 0 ) 与函数 y 2 = k 2 x ( k 2 是常数, k 2 ≠ 0 ) 的图象交于点 A ,点 A 关于 y 轴的对称点为点 B .
(1)若点 B 的坐标为 ( - 1 , 2 ) ,
①求 k 1 , k 2 的值;
②当 y 1 < y 2 时,写出 x 的取值范围;
(2)若点 B 在函数 y 3 = k 3 x ( k 3 是常数, k 3 ≠ 0 ) 的图象上,求 k 1 + k 3 的值.
已知关于x的一元二次方程有两个相等的实数根,求的值.
(1)计算: (2)解方程: (3)求不等式组的解集
某学校组织三好学生去野营,若每个帐篷住4人,则有37人没地方住;若每个帐篷住6人,则还有一个帐篷里不空也不足3人,问:有多少个帐篷?多少学生?
解方程: (1) (5分) (2) (5分)
化简: ⑴ (5分) (2) (5分)