探究函数性质时,我们经历了列表、描点、连线画函数图象,观察分析图象特征,概括函数性质的过程.以下是我们研究函数 性质及其应用的部分过程,请按要求完成下列各小题.
|
|
|
|
|
0 |
1 |
2 |
3 |
4 |
5 |
|
|
|
|
6 |
5 |
4 |
|
2 |
1 |
|
7 |
|
(1)写出函数关系式中 及表格中 , 的值:
, , ;
(2)根据表格中的数据在所给的平面直角坐标系中画出该函数的图象,并根据图象写出该函数的一条性质: ;
(3)已知函数 的图象如图所示,结合你所画的函数图象,直接写出不等式 的解集.

在初中阶段的函数学习中,我们经历了列表、描点、连线画函数图象,并结合图象研究函数性质及其应用的过程.以下是我们研究函数 的性质及其应用的部分过程,请按要求完成下列各小题.
(1)请把下表补充完整,并在给出的图中补全该函数的大致图象;
|
|
|
|
|
|
|
|
0 |
1 |
2 |
3 |
4 |
5 |
|
|
|
|
|
|
|
0 |
|
4 |
|
0 |
|
|
|
|
(2)请根据这个函数的图象,写出该函数的 条性质;
(3)已知函数 的图象如图所示.根据函数图象,直接写出不等式 的解集.(近似值保留一位小数,误差不超过

甲无人机从地面起飞,乙无人机从距离地面 高的楼顶起飞,两架无人机同时匀速上升 .甲、乙两架无人机所在的位置距离地面的高度 (单位: 与无人机上升的时间 (单位: 之间的关系如图所示.下列说法正确的是

| A. |
时,两架无人机都上升了 |
| B. |
时,两架无人机的高度差为 |
| C. |
乙无人机上升的速度为 |
| D. |
时,甲无人机距离地面的高度是 |
某公司生产的一种营养品信息如表.已知甲食材每千克的进价是乙食材的2倍,用80元购买的甲食材比用20元购买的乙食材多1千克.
|
营养品信息表 |
||
|
营养成份 |
每千克含铁42毫克 |
|
|
配料表 |
原料 |
每千克含铁 |
|
甲食材 |
50毫克 |
|
|
乙食材 |
10毫克 |
|
|
规格 |
每包食材含量 |
每包单价 |
|
包装 |
1千克 |
45元 |
|
包装 |
0.25千克 |
12元 |
(1)问甲、乙两种食材每千克进价分别是多少元?
(2)该公司每日用18000元购进甲、乙两种食材并恰好全部用完.
①问每日购进甲、乙两种食材各多少千克?
②已知每日其他费用为2000元,且生产的营养品当日全部售出.若 的数量不低于 的数量,则 为多少包时,每日所获总利润最大?最大总利润为多少元?
Ⅰ号无人机从海拔 处出发,以 的速度匀速上升,Ⅱ号无人机从海拔 处同时出发,以 的速度匀速上升,经过 两架无人机位于同一海拔高度 .无人机海拔高度 与时间 的关系如图.两架无人机都上升了 .
(1)求 的值及Ⅱ号无人机海拔高度 与时间 的关系式;
(2)问无人机上升了多少时间,Ⅰ号无人机比Ⅱ号无人机高28米.

某通讯公司就手机流量套餐推出三种方案,如下表:
|
方案 |
方案 |
方案 |
|
|
每月基本费用(元 |
20 |
56 |
266 |
|
每月免费使用流量(兆 |
1024 |
|
无限 |
|
超出后每兆收费(元 |
|
|
, , 三种方案每月所需的费用 (元 与每月使用的流量 (兆 之间的函数关系如图所示.
(1)请写出 , 的值.
(2)在 方案中,当每月使用的流量不少于1024兆时,求每月所需的费用 (元 与每月使用的流量 (兆 之间的函数关系式.
(3)在这三种方案中,当每月使用的流量超过多少兆时,选择 方案最划算?

李师傅将容量为60升的货车油箱加满后,从工厂出发运送一批物资到某地.行驶过程中,货车离目的地的路程 (千米)与行驶时间 (小时)的关系如图所示(中途休息、加油的时间不计).当油箱中剩余油量为10升时,货车会自动显示加油提醒.设货车平均耗油量为0.1升 千米,请根据图象解答下列问题:
(1)写出工厂离目的地的路程;
(2)求 关于 的函数表达式;
(3)当货车显示加油提醒后,问行驶时间 在怎样的范围内货车应进站加油?

某鲜花销售公司每月付给销售人员的工资有两种方案.
方案一:没有底薪,只付销售提成;
方案二:底薪加销售提成.
如图中的射线 ,射线 分别表示该鲜花销售公司每月按方案一,方案二付给销售人员的工资 (单位:元)和 (单位:元)与其当月鲜花销售量 (单位:千克) 的函数关系.
(1)分别求 、 与 的函数解析式(解析式也称表达式);
(2)若该公司某销售人员今年3月份的鲜花销售量没有超过70千克,但其3月份的工资超过2000元.这个公司采用了哪种方案给这名销售人员付3月份的工资?

在"看图说故事"活动中,某学习小组结合图象设计了一个问题情境.已知学校、书店、陈列馆依次在同一条直线上,书店离学校 ,陈列馆离学校 .李华从学校出发,匀速骑行 到达书店;在书店停留 后,匀速骑行 到达陈列馆;在陈列馆参观学习一段时间,然后回学校;回学校途中,匀速骑行 后减速,继续匀速骑行回到学校.给出的图象反映了这个过程中李华离学校的距离 与离开学校的时间 之间的对应关系.

请根据相关信息,解答下列问题:
(Ⅰ)填表:
|
离开学校的时间 |
0.1 |
0.5 |
0.8 |
1 |
3 |
|
离学校的距离 |
2 |
10 |
|
12 |
|
(Ⅱ)填空:
①书店到陈列馆的距离为 ;
②李华在陈列馆参观学习的时间为 ;
③李华从陈列馆回学校途中,减速前的骑行速度为 ;
④当李华离学校的距离为 时,他离开学校的时间为 .
(Ⅲ)当 时,请直接写出 关于 的函数解析式.
)已知正比例函数 与反比例函数 的图象都经过点 .
(1)求 , 的值;
(2)在图中画出正比例函数 的图象,并根据图象,写出正比例函数值大于反比例函数值时 的取值范围.

某品牌鞋子的长度 与鞋子的"码"数 之间满足一次函数关系.若22码鞋子的长度为 ,44码鞋子的长度为 ,则38码鞋子的长度为
| A. |
|
B. |
|
C. |
|
D. |
|