Ⅰ号无人机从海拔 10 m 处出发,以 10 m / min 的速度匀速上升,Ⅱ号无人机从海拔 30 m 处同时出发,以 a ( m / min ) 的速度匀速上升,经过 5 min 两架无人机位于同一海拔高度 b ( m ) .无人机海拔高度 y ( m ) 与时间 x ( min ) 的关系如图.两架无人机都上升了 15 min .
(1)求 b 的值及Ⅱ号无人机海拔高度 y ( m ) 与时间 x ( min ) 的关系式;
(2)问无人机上升了多少时间,Ⅰ号无人机比Ⅱ号无人机高28米.
如图,在平面直角坐标系中,O为原点,一次函数与反比例函数的图象相交于A(2,1)B(-1,-2)两点,与轴相交于点C. (1)分别求反比例函数和一次函数的解析式(关系式); (2)连接OA,求△AOC的面积.
如图在Rt△ABC中,∠ACB=90°,D是边AB的中点,BE⊥CD,垂足为点E.已知AC=15,cosA=. (1)求线段CD的长; (2)求sin∠DBE的值.
如图,有长为30m的篱笆,一面利用墙(墙的最大可用长度为10m),围成中间隔有一道篱笆(平行于AB)的矩形花圃.设花圃的一边AB为xm,面积为ym2. (1)求y与x的函数关系式; (2)如果要围成面积为63m2的花圃,AB的长是多少? (3)能围成比63m2更大的花圃吗?如果能,请求出最大面积;如果不能,请说明理由.
已知一个二次函数y=ax2+bx+c的图象如图所示,请求出这个二次函数的解析式.
已知关于x的方程x2-6x+m2-3m=0的一根为2. (1)求5m2-15m-100的值; (2)求方程的另一根.