二次函数的图像如图所示,反比列函数与正比列函数在同一坐标系内的大致图像是
某人驾车从A地上高速公路前往B地,中途在服务区休息了一段时间.出发时油箱中存油40升,到B地后发现油箱中还剩油4升,则从出发后到B地油箱中所剩油y(升)与时间t(小时)之间函数的大致图象是( )
A. | B. |
C. | D. |
函数的图象如图所示,下列对该函数性质的论述正确的是
A.该函数的图象是轴对称图形 |
B.在每个象限内,的值随值的增大而减小 |
C.当时,该函数在时取得最小值2 |
D.的值可能为1 |
小华同学利用假期时间乘坐一大巴车去看望在外打工的妈妈。出发时,大巴的油箱装满油,匀速行驶一段时间后,油箱内的汽油恰剩一半时又加满了油,接着按原速度行驶,到目的地时油箱中还剩有箱汽油。设油箱中所剩汽油量为(升),时间为(分钟),则与的大致图象是( )
如图,正△ABC的边长为3cm,动点P从点A出发,以每秒1cm的速度,沿的方向运动,到达点C时停止,设运动时间为x(秒),,则y关于x的函数的图像大致为【 】
A. | B. | C. | D. |
小英早上从家里骑车上学,途中想到社会实践调查资料忘带了,立刻原路返回,返家途中遇到给她送资料的妈妈,接过资料后,小英加速向学校赶去.能反映她离家距离s与骑车时间t的函数关系图象大致是
如图,在中,∠C=90°,AB=5cm,BC=3cm,动点P从点A 出发,以每秒1cm的速度,沿ABC的方向运动,到达点C时停止.设,运动时间为t秒,则能反映y与t之间函数关系的大致图象是 ( )
如图,在△ABC中,∠C=90°,M是AB的中点,动点P从点A出发,
沿AC方向匀速运动到终点C,动点Q从点C出发,沿CB方向匀速运动到终点B.已知P,Q两点同时出发,并同时到达终点.连结MP,MQ,PQ.在整个运动过程中,△MPQ的面积大小变化情况是【 】
A.一直增大 B.一直减小 C.先减小后增大 D.先增大后减小
如下图,动点P从点A出发,沿线段AB运动至点B后,立即按原路返回,点P在运动过程中速度大小不变,则以点A为圆心,线段AP长为半径的圆的面积S与点P的运动时间t之间的函数图像大致为 ( )
如图,正方形ABCD的边长为a,动点P从点A出发,沿折线A→B→D→C→A的路径运动,回到点A时运动停止.设点P运动的路程长为长为x,AP长为y,则y关于x的函数图象大致是【 】
小明骑自行车上学,开始以正常速度匀速行驶,但行至中途时,自行车出了故障,只好停下来修车,车修好后,因怕耽误上课,他比修车前加快了速度继续匀速行驶,下面是行驶路程s(m)关于时间t(min)的函数图象,那么符合小明行驶情况的大致图象是【 】
若m、n(m<n)是关于x的方程的两根,且a < b,则a、b、m、n 的大小关系是( )
A.m < a < b< n | B.a < m < n < b |
C.a < m < b< n | D.m < a < n < b |
一天,亮亮发烧了,早晨他烧得厉害,吃过药后感觉好多了, 中午时亮亮的体温基本正常,但是下午他的体温又开始上升,直到半夜亮亮才感觉身上不那么烫了. 图中能基本上反映出亮亮这一天(0时~24时)体温的变化情况的是( )
小翔在如图1所示的场地上匀速跑步,他从点A出发,沿箭头所示方向经过点B跑到点C,共用时30秒.他的教练选择了一个固定的位置观察小翔的跑步过程.设小翔跑步的时间为t(单位:秒),他与教练的距离为y(单位:米),表示y与t的函数关系的图象大致如图2所示,则这个固定位置可能是图1中的【 】
A.点M | B.点N | C.点P | D.点Q |
如图,为圆O的四等分点,动点从圆心出发,沿路线作匀速运动,设运动时间为(t).,则下列图象中表示与t之间函数关系最恰当的是( )