在△ABC中,P是BC边上的一个动点,以AP为直径的⊙O分别交AB、AC于点E和点F.
(1)若∠BAC=45°,EF=4,则AP的长为多少?
(2)在(1)条件下,求阴影部分面积.
(3)试探究:当点P在何处时,EF最短?请直接写出你所发现的结论,不必证明.
如图,AB是⊙O的直径,C是⊙O上一点,AC平分∠BAD;AD⊥ CD,垂足为D.
(1)求证:CD是⊙O的切线
(2)若⊙O的直径为5,CD=2.求AC的长.
尺规作图(保留作图痕迹,不写作法)
某地要修建一处公共服务设施,使它到三所公寓A、B、C 的距离相等.
(1)若三所公寓A、B、C的位置如图所示,请你在图中确定这处公共服务设施(用点P表示)的位置;
(2)若∠BAC=66º,则∠BPC= º.
已知:如图,AB为⊙O的直径,AD为弦,∠DBC =∠A.
求证:BC是⊙O的切线;
若OC∥AD,OC交BD于E,BD=6,CE=4,求AD的长.
如图,破残的圆形轮片上,弦AB的垂直平分线交弧AB于点C,交弦AB于点D.已知:AB, CD
求作此残片所在的圆(不写作法,保留作图痕迹)
求(1)中所作圆的半径
已知:如图,AB是⊙O的一条弦,点C为的中点,CD是⊙O的直径,过C点的直线交AB所在直线于点E,交⊙O于点F。
(1)判定图中与的数量关系,并写出结论;
(2)将直线绕C点旋转(与CD不重合),在旋转过程中,E点、F点的位置也随之变化,请你在下面两个备用图中分别画出在不同位置时,使(1)的结论仍然成立的图形,标上相应字母,选其中一个图形给予证明。