李老师开车从甲地到相距240千米的乙地,如果油箱剩余油量y(升)与行驶里程x(千米)之间是一次函数关系,其图象如图所示,那么到达乙地时油箱剩余油量是 升.
如图①,在平面直角坐标系中,平行四边形在第一象限,直线从原点出发沿轴正方向平移,被平行四边形截得的线段的长度与平移的距离的函数图象如图②所示,那么平行四边形的面积为 .
在平面直角坐标系中,点O是坐标原点,过点A(1,2)的直线y=kx+b与x轴交于点B,且S△AOB=4,则k的值是 _________ .
已知,一次函数的图像与正比例函数交于点A,并与y轴交于点,△AOB的面积为6,则 。
如图,已知函数y=2x和函数的图象交于A、B两点,过点A作AE⊥x轴于点E,若△AOE的面积为4,P是坐标平面上的点,且以点B、O、E、P为顶点的四边形是平行四边形,则满足条件的P点坐标是 .
五一节某超市搞促销活动:①一次性购物不超过150元不享受优惠;②一次性购物超过150元但不超过500元一律九折;③一次性购物超过500元一律八折.王宁两次购物分别付款120元、432元,若王宁一次性购买与上两次相同的商品,则应付款_________元.
在平面直角坐标系xOy中,点A1,A2,A3,…和B1,B2,B3,…分别在直线y=kx+b和x轴上.△OA1B1,△B1A2B2,△B2A3B3,…都是等腰直角三角形,如果A1(1,1),A2,那么点A3的纵坐标是 ,点A2013的纵坐标是 .
已知直线(n为正整数)与坐标轴围成的三角形的面积为Sn,则S1+S2+S3++S2012= .
如图,已知直线l:,过点M(2,0)作x轴的垂线交直线l于点N,过点N作直线l的垂线交x轴于点M1;过点M1作x轴的垂线交直线l于N1,过点N1作直线l的垂线交x轴于点M2,…;按此作法继续下去,则点M10的坐标为 .
如图,在平面直角坐标中,直线l经过原点,且与y轴正半轴所夹的锐角为60°,过点A(0,1)作y轴的垂线l于点B,过点B1作作直线l的垂线交y轴于点A1,以A1B.BA为邻边作ABA1C1;过点A1作y轴的垂线交直线l于点B1,过点B1作直线l的垂线交y轴于点A2,以A2B1.B1A1为邻边作A1B1A2C2;…;按此作法继续下去,则Cn的坐标是 .
“龟兔首次赛跑”之后,输了比赛的兔子没有气馁,总结反思后,和乌龟约定再赛一场.图中的函数图象刻画了“龟兔再次赛跑”的故事(x表示乌龟从起点出发所行的时间,y1表示乌龟所行的路程,y2表示兔子所行的路程).有下列说法:
①“龟兔再次赛跑”的路程为1000米;
②兔子和乌龟同时从起点出发;
③乌龟在途中休息了10分钟;
④兔子在途中750米处追上乌龟.
其中正确的说法是 .(把你认为正确说法的序号都填上)
如图,已知直线与双曲线(k>0)交于A、B两点,点B的坐标为,C为双曲线(k>0)上一点,且在第一象限内,若△AOC的面积为6,则点C的坐标为 .
如图,直线l1⊥x轴于点A(2,0),点B是直线l1上的动点.直线l2:y=x+1交l1于点C,过点B作直线l3垂直于l2,垂足为D,过点O,B的直线l4交l 2于点E.当直线l1,l2,l3能围成三角形时,设该三角形面积为S1,当直线l2,l3,l4能围成三角形时,设该三角形面积为S2.
(1)若点B在线段AC上,且S1=S2,则B点坐标为 ;
(2)若点B在直线l1上,且S2=S1,则∠BOA的度数为 .
已知直线(n为正整数)与坐标轴围成的三角形的面积为Sn,则S1+S2+S3+…+S2012= .
甲、乙两名大学生去距学校36千米的某乡镇进行社会调查.他们从学校出发,骑电动车行驶20分钟时发现忘带相机,甲下车前往,乙骑电动车按原路返回.乙取相机后(在学校取相机所用时间忽略不计),骑电动车追甲.在距乡镇13.5千米处追上甲后同车前往乡镇.乙电动车的速度始终不变.设甲与学校相距
(千米),乙与学校相离
(千米),甲离开学校的时间为
(分钟).
、
与x之间的函数图象如图所示,结合图象解答下列问题:
(1)电动车的速度为千米/分钟;
(2)甲步行所用的时间为分;
(3)求乙返回到学校时,甲与学校相距多远?