[四川]2013年初中毕业升学考试(四川广安卷)数学
未来三年,国家将投入8450亿元用于缓解群众“看病难、看病贵”的问题.将8450亿元用科学记数法表示为【 】
A.0.845×104亿元 | B.8.45×103亿元 | C.8.45×104亿元 | D.84.5×102亿元 |
下列运算正确的是【 】
A.a2•a4=a8 | B.2a2+a2=3a4 | C.a6÷a2=a3 | D.(ab2)3=a3b6 |
数据21、12、18、16、20、21的众数和中位数分别是【 】
A.21和19 | B.21和17 | C.20和19 | D.20和18 |
等腰三角形的一条边长为6,另一边长为13,则它的周长为【 】
A.25 | B.25或32 | C.32 | D.19 |
下列命题中正确的是【 】
A.函数的自变量x的取值范围是x>3 |
B.菱形是中心对称图形,但不是轴对称图形 |
C.一组对边平行,另一组对边相等四边形是平行四边形 |
D.三角形的外心到三角形的三个顶点的距离相等 |
如图,已知半径OD与弦AB互相垂直,垂足为点C,若AB=8cm,CD=3cm,则圆O的半径为【 】
A.cm | B.5cm | C.4cm | D.cm |
已知二次函数y=ax2+bx+c的图象如图所示,对称轴是直线x=1.下列结论:
①abc>0,②2a+b=O,③b2﹣4ac<0,④4a+2b+c>0其中正确的是【 】
A.①③ | B.只有② | C.②④ | D.③④ |
如图,如果从半径为5cm的圆形纸片上剪去圆周的一个扇形,将留下的扇形围成一个圆锥(接缝处不重叠),那么这个圆锥的高是 cm.
已知反比例函数(k≠0)和一次函数y=x﹣6.
(1)若一次函数与反比例函数的图象交于点P(2,m),求m和k的值.
(2)当k满足什么条件时,两函数的图象没有交点?
6月5日是“世界环境日”,广安市某校举行了“洁美家园”的演讲比赛,赛后整理参赛同学的成绩,将学生的成绩分成A、B、C、D四个等级,并制成了如下的条形统计图和扇形图(如图1、图2).
(1)补全条形统计图.
(2)学校决定从本次比赛中获得A和B的学生中各选出一名去参加市中学生环保演讲比赛.已知A等中男生有2名,B等中女生有3 名,请你用“列表法”或“树形图法”的方法求出所选两位同学恰好是一名男生和一名女生的概率.
某商场筹集资金12.8万元,一次性购进空调、彩电共30台.根据市场需要,这些空调、彩电可以全部销售,全部销售后利润不少于1.5万元,其中空调、彩电的进价和售价见表格.
|
空调 |
彩电 |
进价(元/台) |
5400 |
3500 |
售价(元/台) |
6100 |
3900 |
设商场计划购进空调x台,空调和彩电全部销售后商场获得的利润为y元.
(1)试写出y与x的函数关系式;
(2)商场有哪几种进货方案可供选择?
(3)选择哪种进货方案,商场获利最大?最大利润是多少元?
如图,广安市防洪指挥部发现渠江边一处长400米,高8米,背水坡的坡角为45°的防洪大堤(横截面为梯形ABCD)急需加固.经调查论证,防洪指挥部专家组制定的加固方案是:背水坡面用土石进行加固,并使上底加宽2米,加固后,背水坡EF的坡比i=1:2.
(1)求加固后坝底增加的宽度AF的长;
(2)求完成这项工程需要土石多少立方米?
雅安芦山发生7.0级地震后,某校师生准备了一些等腰直角三角形纸片,从每张纸片中剪出一个半圆制作玩具,寄给灾区的小朋友.已知如图,是腰长为4的等腰直角三角形ABC,要求剪出的半圆的直径在△ABC的边上,且半圆的弧与△ABC的其他两边相切,请作出所有不同方案的示意图,并求出相应半圆的半径(结果保留根号).
如图,在△ABC中,AB=AC,以AB为直径作半圆⊙0,交BC于点D,连接AD,过点D作DE⊥AC,垂足为点E,交AB的延长线于点F.
(1)求证:EF是⊙0的切线.
(2)如果⊙O的半径为5,sin∠ADE=,求BF的长.
如图,在平面直角坐标系xOy中,抛物线y=ax2+bx+c经过A、B、C三点,已知点A(﹣3,0),B(0,3),C(1,0).
(1)求此抛物线的解析式.
(2)点P是直线AB上方的抛物线上一动点,(不与点A、B重合),过点P作x轴的垂线,垂足为F,交直线AB于点E,作PD⊥AB于点D.
①动点P在什么位置时,△PDE的周长最大,求出此时P点的坐标;
②连接PA,以AP为边作图示一侧的正方形APMN,随着点P的运动,正方形的大小、位置也随之改变.当顶点M或N恰好落在抛物线对称轴上时,求出对应的P点的坐标.(结果保留根号)