6月5日是“世界环境日”,广安市某校举行了“洁美家园”的演讲比赛,赛后整理参赛同学的成绩,将学生的成绩分成A、B、C、D四个等级,并制成了如下的条形统计图和扇形图(如图1、图2).(1)补全条形统计图.(2)学校决定从本次比赛中获得A和B的学生中各选出一名去参加市中学生环保演讲比赛.已知A等中男生有2名,B等中女生有3 名,请你用“列表法”或“树形图法”的方法求出所选两位同学恰好是一名男生和一名女生的概率.
已知△A′B′C′是由△ABC经过平移得到的,它们各顶点在平面直角坐标系中的坐标如下表所示:
(1)观察表中各对应点坐标的变化,并填空:__________,__________,__________;(2)在平面直角坐标系中画出△ABC及平移后的△A′B′C′(3)直接写出△A′B′C′的面积是__________。
已知:关于x,y的方程组的解为负数,求m的取值范围.
(1)解不等式3(x+1)<4(x-2)-3,并把它的解集表示在数轴上;(2).求不等式组的整数解.
如图,抛物线与轴的交点为A、B,与 轴的交点为C,顶点为,将抛物线绕点B旋转,得到新的抛物线,它的顶点为D.(1)求抛物线的解析式;(2)设抛物线与轴的另一个交点为E,点P是线段ED上一个动点(P不与E、D重合),过点P作y轴的垂线,垂足为F,连接EF.如果P点的坐标为,△PEF的面积为S,求S与的函数关系式,写出自变量的取值范围;(3)设抛物线的对称轴与轴的交点为G,以G为圆心,A、B两点间的距离为直径作⊙G,试判断直线CM与⊙G的位置关系,并说明理由.
如图,Rt△ABC中,∠ABC=90°,以AB为直径的⊙O交AC于点D,E是BC的中点,连接DE、OE.(1)判断DE与⊙O的位置关系并说明理由; (2)求证:(3)若tanC=,DE=2,求AD的长.