如图,抛物线与轴的交点为A、B,与 轴的交点为C,顶点为,将抛物线绕点B旋转,得到新的抛物线,它的顶点为D.(1)求抛物线的解析式;(2)设抛物线与轴的另一个交点为E,点P是线段ED上一个动点(P不与E、D重合),过点P作y轴的垂线,垂足为F,连接EF.如果P点的坐标为,△PEF的面积为S,求S与的函数关系式,写出自变量的取值范围;(3)设抛物线的对称轴与轴的交点为G,以G为圆心,A、B两点间的距离为直径作⊙G,试判断直线CM与⊙G的位置关系,并说明理由.
某校九年级所有学生参加2015年初中毕业生升学体育测试,为了解情况,从中抽取了部分学生的成绩进行统计后分为A、B、C、D四等,并绘制成如图所示的条形统计图和扇形统计图(未完成),请结合图中所给信息解答下列问题:(1)计算一共抽取了多少名学生的测试成绩并将条形统计图补充完整;(2)在扇形统计图中,等级C对应的圆心角的度数为多少度?(3)若该校九年级学生共有850人参加体育测试,估计达到A级和B级的学生共有多少人?
先化简,再求值:,其中x满足x2+x-2=0.
计算或解方程:(1)|2-tan60°|-(π-3.14)0+(-)-2+(2).
如图所示,已知点C(-3,m),点D(m-3,0).直线CD交y轴于点A.作CE与X轴垂直,垂足为E,以点B(-1,0)为顶点的抛物线恰好经过点A、C. (1)则∠CDE= ; (2)求抛物线对应的函数关系式; (3)设P(x,y)为抛物线上一点(其中-3<x<1-或-1<x<1,连结BP并延长交直线CE于点N,记N点的纵坐标为yN,连结CP并延长交X轴于点M. ①试证明:EM•(EC+yN)为定值; ②试判断EM+EC+yN是否有最小值,并说明理由
如图所示,D是以AB为直径的半圆O上的一点,C是弧AD的中点,点M在AB上,AD与CM交于点N,CN=AN.(1)求证:CM⊥AB;(2)若AC=2,BD=2,求半圆的直径.